Numerical Integration of Celestial Bodies Equations with taking into Account Regularization and Use Osculating Elements of Major Planets
Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 5 (2010), pp. 305-308.

Voir la notice de l'article provenant de la source Math-Net.Ru

The regular differential equations for a problem of perturbed motion are received. The computing algorithm and the program of numerical integration of the equations of celestial motion by a method of Everhart taking into account regularization and use osculating of elements of major planets is developed.
Keywords: numerical integration, differential equation of motion, method of the osculation elements.
Mots-clés : regularisation
@article{VSGTU_2010_5_a37,
     author = {D. A. Zausaev and L. A. Solov'ev},
     title = {Numerical {Integration} of {Celestial} {Bodies} {Equations} with taking into {Account} {Regularization} and {Use} {Osculating} {Elements} of {Major} {Planets}},
     journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
     pages = {305--308},
     publisher = {mathdoc},
     number = {5},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGTU_2010_5_a37/}
}
TY  - JOUR
AU  - D. A. Zausaev
AU  - L. A. Solov'ev
TI  - Numerical Integration of Celestial Bodies Equations with taking into Account Regularization and Use Osculating Elements of Major Planets
JO  - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
PY  - 2010
SP  - 305
EP  - 308
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VSGTU_2010_5_a37/
LA  - ru
ID  - VSGTU_2010_5_a37
ER  - 
%0 Journal Article
%A D. A. Zausaev
%A L. A. Solov'ev
%T Numerical Integration of Celestial Bodies Equations with taking into Account Regularization and Use Osculating Elements of Major Planets
%J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
%D 2010
%P 305-308
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VSGTU_2010_5_a37/
%G ru
%F VSGTU_2010_5_a37
D. A. Zausaev; L. A. Solov'ev. Numerical Integration of Celestial Bodies Equations with taking into Account Regularization and Use Osculating Elements of Major Planets. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 5 (2010), pp. 305-308. http://geodesic.mathdoc.fr/item/VSGTU_2010_5_a37/

[1] Zausaev A. F., Zausaev D. A., “Chislennoe integrirovanie uravnenii dvizheniya malykh tel Solnechnoi sistemy s ispolzovaniem oskuliruyuschikh elementov bolshikh planet”, Tr. Shestoi Vserossiiskoi nauchn. konf. s mezhdunar. uchastiem. Ch. $3$, Differentsialnye uravneniya i kraevye zadachi, Mat. modelirovanie i kraevye zadachi, SamGTU, Samara, 2009, 125–130

[2] Standish E. M., JPL Planetary and Lunar Ephemerides DE405/LE405, Jet Prop Lab Technical Report. IOM 312. F-048, 1998

[3] Brumberg V. A., Relyativistskaya nebesnaya mekhanika, Nauka, M., 1972, 382 pp. | Zbl

[4] Shtifel E. Sheifele G., Lineinaya i regulyarnaya nebesnaya mekhanika, Nauka, M., 1975, 304 pp.

[5] Everhart E., “Implicit single methods for integrating orbits”, Celestial Mechanics, 10 (1974), 35–55 | DOI | Zbl

[6] Zausaev A. F., Zausaev A. A., Katalog orbitalnoi evolyutsii korotkoperiodicheskikh komet s 1800 po 2204 gg., Mashinostroenie-1, M., 2007, 410 pp.

[7] Zausaev A. F., Solovev L. A., “Primenenie metoda regulyarizatsii k differentsialnym uravneniyam dvizheniya komet”, Vestn. Sam. gos. tekhn. un-ta. Ser. Fiz.-mat. nauki, 2009, no. 2(19), 288–292 | DOI