Estimations of a Differential Operator in Spectral Parameter Problems for Elliptic Equations with Discontinuous Nonlinearities
Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 5 (2010), pp. 268-271.

Voir la notice de l'article provenant de la source Math-Net.Ru

The basic boundary value problems for semilinear equations of elliptic type with a spectral parameter and discontinuous nonlinearity are considered in a bounded domain with a sufficiently smooth boundary. The parameter values for which the corresponding problem has the nonzero solution are called eigenvalues. The existence of eigenvalue problem solutions for equations of elliptic type with discontinuous nonlinearities is considered in this paper. Estimations of the differential operator are obtained for these problems.
Keywords: boundary value problems, spectral parameter, discontinuous nonlinearity, estimations of differential operator.
Mots-clés : equations of elliptic type
@article{VSGTU_2010_5_a30,
     author = {D. K. Potapov},
     title = {Estimations of a {Differential} {Operator} in {Spectral} {Parameter} {Problems} for {Elliptic} {Equations} with {Discontinuous} {Nonlinearities}},
     journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
     pages = {268--271},
     publisher = {mathdoc},
     number = {5},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGTU_2010_5_a30/}
}
TY  - JOUR
AU  - D. K. Potapov
TI  - Estimations of a Differential Operator in Spectral Parameter Problems for Elliptic Equations with Discontinuous Nonlinearities
JO  - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
PY  - 2010
SP  - 268
EP  - 271
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VSGTU_2010_5_a30/
LA  - ru
ID  - VSGTU_2010_5_a30
ER  - 
%0 Journal Article
%A D. K. Potapov
%T Estimations of a Differential Operator in Spectral Parameter Problems for Elliptic Equations with Discontinuous Nonlinearities
%J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
%D 2010
%P 268-271
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VSGTU_2010_5_a30/
%G ru
%F VSGTU_2010_5_a30
D. K. Potapov. Estimations of a Differential Operator in Spectral Parameter Problems for Elliptic Equations with Discontinuous Nonlinearities. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 5 (2010), pp. 268-271. http://geodesic.mathdoc.fr/item/VSGTU_2010_5_a30/

[1] Krasnoselskii M. A., Pokrovskii A. V., Sistemy s gisterezisom, Nauka, M., 1983, 272 pp. | MR

[2] Krasnoselskii M. A., Pokrovskii A. V., “Pravilnye resheniya uravnenii s razryvnymi nelineinostyami”, Dokl. AN SSSR, 226:3 (1976), 506–509 | MR

[3] Pavlenko V. N., Potapov D. K., “Existence of a Ray of Eigenvalues for Equations with Discontinuous Operators”, Siberian Math. J., 42:4 (2001), 766–773 | DOI | MR | Zbl

[4] Potapov D. K., “O suschestvovanii lucha sobstvennykh znachenii dlya uravnenii ellipticheskogo tipa s razryvnymi nelineinostyami v kriticheskom sluchae”, Vestn. S.-Peterb. un-ta. Ser. 10. Prikladnaya matematika. Informatika. Protsessy upravleniya, 2004, no. 4, 125–132

[5] Potapov D. K., Zadachi so spektralnym parametrom i razryvnoi nelineinostyu, IBP, SPb., 2008, 99 pp.

[6] Potapov D. K., “On an upper bound for the value of the bifurcation parameter in eigenvalue problems for elliptic equations with discontinuous nonlinearities”, Differ. Equ., 44:5 (2008), 737–739 | DOI | MR | Zbl