Voir la notice de l'article provenant de la source Math-Net.Ru
@article{VSGTU_2010_5_a3, author = {T. G. Sukacheva and O. P. Matveeva}, title = {On a {Homogenous} {Thermoconvection} {Model} of the {Non-Compressible} {Viscoelastic} {Kelvin-Voight} {Fluid} of the {Non-Zero} {Order}}, journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences}, pages = {33--41}, publisher = {mathdoc}, number = {5}, year = {2010}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/VSGTU_2010_5_a3/} }
TY - JOUR AU - T. G. Sukacheva AU - O. P. Matveeva TI - On a Homogenous Thermoconvection Model of the Non-Compressible Viscoelastic Kelvin-Voight Fluid of the Non-Zero Order JO - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences PY - 2010 SP - 33 EP - 41 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VSGTU_2010_5_a3/ LA - ru ID - VSGTU_2010_5_a3 ER -
%0 Journal Article %A T. G. Sukacheva %A O. P. Matveeva %T On a Homogenous Thermoconvection Model of the Non-Compressible Viscoelastic Kelvin-Voight Fluid of the Non-Zero Order %J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences %D 2010 %P 33-41 %N 5 %I mathdoc %U http://geodesic.mathdoc.fr/item/VSGTU_2010_5_a3/ %G ru %F VSGTU_2010_5_a3
T. G. Sukacheva; O. P. Matveeva. On a Homogenous Thermoconvection Model of the Non-Compressible Viscoelastic Kelvin-Voight Fluid of the Non-Zero Order. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 5 (2010), pp. 33-41. http://geodesic.mathdoc.fr/item/VSGTU_2010_5_a3/
[1] Oskolkov A. P., “Initial-boundary value problems for the equations of motion of Kelvin–Voigt fluids and Oldroyd fluids”, Proc. Steklov Inst. Math., 179 (1989), 137–182 | Zbl
[2] Sviridyuk G. A., “Solvability of the problem of thermal convection of a viscoelastic incompressible liquid”, Sov. Math., 34:12 (1990), 80–86 | Zbl
[3] Sviridyuk G. A., Fedorov V. E., “Linear Sobolev Type Equations and Degenerate Semigroups of Operators”, Inverse and Ill-posed Problems Series, VSP, Utrecht; Boston; Köln; Tokyo, 2003, 216 pp. | Zbl
[4] Sviridyuk G. A., “On the general theory of operator semigroups”, Russian Math. Surveys, 49:4 (1994), 45–74 | DOI | Zbl
[5] Sviridyuk G. A., “Quasistationary Trajectories of Semilinear Dynamical Equations of Sobolev Type”, Russian Academy of Sciences. Izvestiya Mathematics, 42:3 (1994), 601–614 | DOI | Zbl
[6] Sviridyuk G. A., Sukacheva T. G., “Fazovye prostranstva odnogo klassa operatornykh uravnenii”, Differents. uravneniya, 26:2 (1990), 250–258 | Zbl
[7] Sviridyuk G. A., Sukacheva T. G., “Zadacha Koshi dlya odnogo klassa polulineinykh uravnenii tipa Soboleva”, Sib. matem. zh., 31:5 (1990), 109–119 | Zbl
[8] Levine H. A., “Some Nonexistance and Instability Theorems for Solutions of Formally Parabolic Equations of Form $Du_t=-Au+F(u)$”, Arch. Rat. Mech. Anal., 51:5 (1973), 371–386 | DOI | Zbl
[9] Borisovich Yu. G., Zvyagin V. G., Sapronov Yu. I., “Non-linear Fredholm maps and the Leray-Schauder theory”, Russian Math. Surveys, 32:4 (1977), 1–54 | DOI | Zbl | Zbl
[10] Marsden J. E., McCracken M., “The Hopf Bifurcation and Its Applications”, Applied Mathematical Sciences, 19, Springer-Verlag, New York, 1976 ; Marsden Dzh., Mak-Kraken M., Bifurkatsiya rozhdeniya tsikla i ee prilozheniya, Mir, M., 1980, 368 pp. | DOI | Zbl | Zbl
[11] Sviridyuk G. A., “On a model for dynamics of weak-compressible viscous-elastic liquid”, Russian Math. (Iz. VUZ), 38:1 (1994), 59–68 | Zbl
[12] Sukacheva T. G., “On a certain model of motion of an incompressible visco-elastic Kelvin-Voight fluid of nonzero order”, Differ. Equations, 33:4 (1997), 557–562 | Zbl
[13] Sviridyuk G. A., “Semilinear equations of Sobolev type with a relatively bounded operator”, Sov. Math. Dokl., 43:3 (1991), 797–801 | Zbl