On a Homogenous Thermoconvection Model of the Non-Compressible Viscoelastic Kelvin-Voight Fluid of the Non-Zero Order
Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 5 (2010), pp. 33-41.

Voir la notice de l'article provenant de la source Math-Net.Ru

The homogeneous thermoconvection problem of the non-compressible viscoelastic Kelvin-Voight fluid of the non-zero order is considered. The conducted research is based on the results of the semilinear Sobolev type equations theory, because the first initial value problem for the corresponding system of the differential equations in private derivatives is reduced to the abstract Cauchy problem for the specified equation. The concepts of the $p$-sectorial operator and the resolving semigroup of operators of the Cauchy problem for the corresponding linear homogeneous Sobolev type equation are used. The existence and uniqueness theorem of the solution which is a quasi-stationary semi-trajectory is proved. The complete description of the phase space is obtained.
Mots-clés : Sobolev type equations
Keywords: non-compressible viscoelastic fluid, phase space.
@article{VSGTU_2010_5_a3,
     author = {T. G. Sukacheva and O. P. Matveeva},
     title = {On a {Homogenous} {Thermoconvection} {Model} of the {Non-Compressible} {Viscoelastic} {Kelvin-Voight} {Fluid} of the {Non-Zero} {Order}},
     journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
     pages = {33--41},
     publisher = {mathdoc},
     number = {5},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGTU_2010_5_a3/}
}
TY  - JOUR
AU  - T. G. Sukacheva
AU  - O. P. Matveeva
TI  - On a Homogenous Thermoconvection Model of the Non-Compressible Viscoelastic Kelvin-Voight Fluid of the Non-Zero Order
JO  - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
PY  - 2010
SP  - 33
EP  - 41
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VSGTU_2010_5_a3/
LA  - ru
ID  - VSGTU_2010_5_a3
ER  - 
%0 Journal Article
%A T. G. Sukacheva
%A O. P. Matveeva
%T On a Homogenous Thermoconvection Model of the Non-Compressible Viscoelastic Kelvin-Voight Fluid of the Non-Zero Order
%J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
%D 2010
%P 33-41
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VSGTU_2010_5_a3/
%G ru
%F VSGTU_2010_5_a3
T. G. Sukacheva; O. P. Matveeva. On a Homogenous Thermoconvection Model of the Non-Compressible Viscoelastic Kelvin-Voight Fluid of the Non-Zero Order. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 5 (2010), pp. 33-41. http://geodesic.mathdoc.fr/item/VSGTU_2010_5_a3/

[1] Oskolkov A. P., “Initial-boundary value problems for the equations of motion of Kelvin–Voigt fluids and Oldroyd fluids”, Proc. Steklov Inst. Math., 179 (1989), 137–182 | Zbl

[2] Sviridyuk G. A., “Solvability of the problem of thermal convection of a viscoelastic incompressible liquid”, Sov. Math., 34:12 (1990), 80–86 | Zbl

[3] Sviridyuk G. A., Fedorov V. E., “Linear Sobolev Type Equations and Degenerate Semigroups of Operators”, Inverse and Ill-posed Problems Series, VSP, Utrecht; Boston; Köln; Tokyo, 2003, 216 pp. | Zbl

[4] Sviridyuk G. A., “On the general theory of operator semigroups”, Russian Math. Surveys, 49:4 (1994), 45–74 | DOI | Zbl

[5] Sviridyuk G. A., “Quasistationary Trajectories of Semilinear Dynamical Equations of Sobolev Type”, Russian Academy of Sciences. Izvestiya Mathematics, 42:3 (1994), 601–614 | DOI | Zbl

[6] Sviridyuk G. A., Sukacheva T. G., “Fazovye prostranstva odnogo klassa operatornykh uravnenii”, Differents. uravneniya, 26:2 (1990), 250–258 | Zbl

[7] Sviridyuk G. A., Sukacheva T. G., “Zadacha Koshi dlya odnogo klassa polulineinykh uravnenii tipa Soboleva”, Sib. matem. zh., 31:5 (1990), 109–119 | Zbl

[8] Levine H. A., “Some Nonexistance and Instability Theorems for Solutions of Formally Parabolic Equations of Form $Du_t=-Au+F(u)$”, Arch. Rat. Mech. Anal., 51:5 (1973), 371–386 | DOI | Zbl

[9] Borisovich Yu. G., Zvyagin V. G., Sapronov Yu. I., “Non-linear Fredholm maps and the Leray-Schauder theory”, Russian Math. Surveys, 32:4 (1977), 1–54 | DOI | Zbl | Zbl

[10] Marsden J. E., McCracken M., “The Hopf Bifurcation and Its Applications”, Applied Mathematical Sciences, 19, Springer-Verlag, New York, 1976 ; Marsden Dzh., Mak-Kraken M., Bifurkatsiya rozhdeniya tsikla i ee prilozheniya, Mir, M., 1980, 368 pp. | DOI | Zbl | Zbl

[11] Sviridyuk G. A., “On a model for dynamics of weak-compressible viscous-elastic liquid”, Russian Math. (Iz. VUZ), 38:1 (1994), 59–68 | Zbl

[12] Sukacheva T. G., “On a certain model of motion of an incompressible visco-elastic Kelvin-Voight fluid of nonzero order”, Differ. Equations, 33:4 (1997), 557–562 | Zbl

[13] Sviridyuk G. A., “Semilinear equations of Sobolev type with a relatively bounded operator”, Sov. Math. Dokl., 43:3 (1991), 797–801 | Zbl