The Boundary Value Problem for the Loaded Equation of Mixed Parabolic-Hyperbolic Type in~Rectangular Area
Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 5 (2010), pp. 263-267.

Voir la notice de l'article provenant de la source Math-Net.Ru

In work necessary and sufficient conditions of uniqueness of the decision of a regional problem for the loaded equation mixed parabolic hyperbolic type in rectangular area are established. The problem decision is constructed in the form of the number sum on own functions of a corresponding one-dimensional problem on own values.
Keywords: loaded equation of mixed type, spectral method, uniqueness
Mots-clés : existence.
@article{VSGTU_2010_5_a29,
     author = {A. V. Tarasenko},
     title = {The {Boundary} {Value} {Problem} for the {Loaded} {Equation} of {Mixed} {Parabolic-Hyperbolic} {Type} {in~Rectangular} {Area}},
     journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
     pages = {263--267},
     publisher = {mathdoc},
     number = {5},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGTU_2010_5_a29/}
}
TY  - JOUR
AU  - A. V. Tarasenko
TI  - The Boundary Value Problem for the Loaded Equation of Mixed Parabolic-Hyperbolic Type in~Rectangular Area
JO  - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
PY  - 2010
SP  - 263
EP  - 267
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VSGTU_2010_5_a29/
LA  - ru
ID  - VSGTU_2010_5_a29
ER  - 
%0 Journal Article
%A A. V. Tarasenko
%T The Boundary Value Problem for the Loaded Equation of Mixed Parabolic-Hyperbolic Type in~Rectangular Area
%J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
%D 2010
%P 263-267
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VSGTU_2010_5_a29/
%G ru
%F VSGTU_2010_5_a29
A. V. Tarasenko. The Boundary Value Problem for the Loaded Equation of Mixed Parabolic-Hyperbolic Type in~Rectangular Area. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 5 (2010), pp. 263-267. http://geodesic.mathdoc.fr/item/VSGTU_2010_5_a29/

[1] Nakhushev A. M., “Nagruzhennye uravneniya i ikh prilozheniya”, Differents. uravneniya, 19:1 (1983), 86–94 | Zbl

[2] Sabitov K. B., Funktsionalnye, differentsialnye i integralnye uravneniya, Vyssh. shk., M., 2005, 672 pp. | Zbl

[3] Fikhtengolts G. M., Kurs differentsialnogo i integralnogo ischisleniya. T. 3, Nauka, M., 1970, 656 pp.