Observers for the Quasi-Linear Systems
Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 5 (2010), pp. 258-262.

Voir la notice de l'article provenant de la source Math-Net.Ru

The problem of quasi-linear systems stabilization in the case of incomplete feedback is considered. While synthesising a stabilizing control, estimation of a current state vector is applied. To design this estimation, observers are constructed. The full-dimensions observer and the Luenberger’s observer are studied and sufficient conditions of its existence are obtained.
Keywords: quasi-linear system, stabilization, program control, incomplete feedback, full-dimensions observer
Mots-clés : Luenberger’s observer.
@article{VSGTU_2010_5_a28,
     author = {Y. A. Shakhov},
     title = {Observers for the {Quasi-Linear} {Systems}},
     journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
     pages = {258--262},
     publisher = {mathdoc},
     number = {5},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGTU_2010_5_a28/}
}
TY  - JOUR
AU  - Y. A. Shakhov
TI  - Observers for the Quasi-Linear Systems
JO  - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
PY  - 2010
SP  - 258
EP  - 262
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VSGTU_2010_5_a28/
LA  - ru
ID  - VSGTU_2010_5_a28
ER  - 
%0 Journal Article
%A Y. A. Shakhov
%T Observers for the Quasi-Linear Systems
%J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
%D 2010
%P 258-262
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VSGTU_2010_5_a28/
%G ru
%F VSGTU_2010_5_a28
Y. A. Shakhov. Observers for the Quasi-Linear Systems. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 5 (2010), pp. 258-262. http://geodesic.mathdoc.fr/item/VSGTU_2010_5_a28/

[1] Zubov V. I., Lektsii po teorii upravleniya, Nauka, M., 1975, 496 pp. | MR | Zbl

[2] Andreev Yu. N., Upravlenie konechnomernymi lineinymi ob'ektami, Nauka, M., 1976, 424 pp. | MR

[3] Luenberger D. C., “Observers for multivariable systems”, IEEE Trans. on Automatic Control, 11:2 (1966), 190–197 | DOI

[4] Smirnov N. V., “Stabilizatsiya bilineinoi nestatsionarnoi sistemy v sluchae nepolnoi obratnoi svyazi”, Vestn. S.-Peterburg. un-ta. Ser. 1, 4:25 (2000), 28–34

[5] Smirnov E. Ya., Stabilizatsiya programmnykh dvizhenii, S.-Peterburg. un-t, SPb., 1997, 307 pp.

[6] Demidovich B. P., Lektsii po matematicheskoi teorii ustoichivosti, Nauka, M., 1967, 472 pp. | MR