Voir la notice de l'article provenant de la source Math-Net.Ru
@article{VSGTU_2010_5_a26, author = {V. D. Beybalaev and M. R. Shabanova}, title = {Numerical {Method} of {Value} {Boundary} {Problem} {Decision} for {2D} {Equation} of {Heat} {Conductivity} {With} {Fractional} {Derivatives}}, journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences}, pages = {244--251}, publisher = {mathdoc}, number = {5}, year = {2010}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/VSGTU_2010_5_a26/} }
TY - JOUR AU - V. D. Beybalaev AU - M. R. Shabanova TI - Numerical Method of Value Boundary Problem Decision for 2D Equation of Heat Conductivity With Fractional Derivatives JO - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences PY - 2010 SP - 244 EP - 251 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VSGTU_2010_5_a26/ LA - ru ID - VSGTU_2010_5_a26 ER -
%0 Journal Article %A V. D. Beybalaev %A M. R. Shabanova %T Numerical Method of Value Boundary Problem Decision for 2D Equation of Heat Conductivity With Fractional Derivatives %J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences %D 2010 %P 244-251 %N 5 %I mathdoc %U http://geodesic.mathdoc.fr/item/VSGTU_2010_5_a26/ %G ru %F VSGTU_2010_5_a26
V. D. Beybalaev; M. R. Shabanova. Numerical Method of Value Boundary Problem Decision for 2D Equation of Heat Conductivity With Fractional Derivatives. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 5 (2010), pp. 244-251. http://geodesic.mathdoc.fr/item/VSGTU_2010_5_a26/
[1] Nigmatullin R. R., “Fractional integral and its physical interpretation”, Theoret. and Math. Phys., 90:3 (1992), 242–251 | DOI | MR | Zbl
[2] Goloviznin V. M., Kiselev V. P., Korotkin I. A., Yurko Yu. I., “Pryamye zadachi neklassicheskogo perenosa radionuklidov v geologicheskikh formatsiyakh”, Izv. RAN. Energetika, 2004, no. 4, 121–130
[3] Samko S.G., Kilbas A. A., Marichev O. I., Integraly i proizvodnye drobnogo poryadka i nekotorye ikh prilozheniya, Nauka i tekhnika, Minsk, 1987, 498 pp. | MR | Zbl
[4] Koltsova E. M., Vasilenko V. A., Tarasov V. V., “Chislennye metody resheniya uravnenii perenosa vo fraktalnykh sredakh”, Zhurn. fiz. khimii, 74:5 (2000), 954–956
[5] Goloviznin V. M., Kiselev V. P., Korotkin I. A., Yurko Yu. I., Nekotorye osobennosti vychislitelnykh algoritmov dlya uravneniya drobnoi diffuzii, Preprint No IBRAE-2002-01, IBRAE RAN, M., 2002, 57 pp.
[6] Goloviznin V. M., Kiselev V. P., Korotkin I. A., Chislennye metody resheniya uravneniya drobnoi diffuzii v odnomernom sluchae, Preprint No IBRAE-2002-10, IBRAE RAN, M., 2002, 35 pp.
[7] Goloviznin V. M., Korotkin I. A., “Numerical methods for some one-dimensional equations with fractional derivatives”, Differ. Equ., 42:7 (2006), 967–973 | DOI | MR | Zbl
[8] Meerschaert M. M., Tadjeran C., “Finite difference approximations for two-sided space-fractional partial differential equations”, Appl. Numer. Math., 56:1 (2006), 80–90 | DOI | MR | Zbl
[9] Meerschaert M. M., Tadjeran C., “Finite difference approximations for fractional advection-dispersion flow equations”, J. Comput. Appl. Math., 172:1 (2004), 65–77 | DOI | MR | Zbl
[10] Tadjeran C., Meerschaert M. M., Scheffler H.-P., “A second-order accurate numerical approximation for the fractional diffusion equation”, J. Comput. Phys., 213:1 (2006), 205–213 | DOI | MR | Zbl
[11] Lynch V. E., Carreras B. A., del-Castill-Negrete D., Ferreira-Mejias K. M., Hicks H. R., “Numerical methods for the solution of partial differential equations of fractional order”, J. Comput. Phys., 192:2 (2003), 406–421 | DOI | MR | Zbl
[12] Liu Q., Liu F., Turner I., Anh V., “Approximation of the Lévy-Feller advection-dispersion process by random walk and finite difference method”, J. Comput. Phys., 222:1 (2007), 57–70 | DOI | MR | Zbl
[13] Taukenova F. I., Shkhanukov-Lafishev M. Kh., “Difference methods for solving boundary value problems for fractional-order differential equations”, Comput. Math. Math. Phys., 46:10 (2006), 1785–1795 | DOI | MR
[14] Lafisheva M.M., Shkhanukov-Lafishev M.Kh., “A locally one-dimensional difference scheme for a fractional-order diffusion equation”, Comput. Math. Math. Phys., 48:10 (2008), 1875–1884 | DOI | MR | Zbl
[15] Alikhanov A. A., “Raznostnye metody resheniya kraevykh zadach dlya volnovogo uravneniya s drobnoi proizvodnoi po vremeni”, Vestn. Sam. gos. tekhn. un-ta. Ser. Fiz.-mat. nauki, 2008, no. 2(17), 13–20 | DOI
[16] Beibalaev V. D., “Matematicheskaya model teploperenosa v sredakh s fraktalnoi strukturoi”, Matem. modelirovanie, 21:5 (2009), 55–62 | MR
[17] Beibalaev V. D., “Chislennyi metod resheniya zadachi perenosa s dvustoronnei proizvodnoi drobnogo poryadka”, Vestn. Sam. gos. tekhn. un-ta. Ser. Fiz.-mat. nauki, 1(18) (2009), 267–270 | DOI
[18] Nazaraliev M. A., Beibalaev V. D., “Chislennye metody resheniya kraevoi zadachi dlya uravneniya teploperenosa s proizvodnoi drobnogo poryadka”, Vestn. DGU, 2008, no. 6, 46–53.
[19] Beibalaev V. D., “Chislennyi metod resheniya matematicheskoi modeli teploperenosa v sredakh s fraktalnoi strukturoi”, Fundamentalnye issledovaniya, 2007, no. 12, 249–251
[20] Nakhushev A. M., Elementy drobnogo ischisleniya i ikh primenenie, Fizmatlit, M., 2003, 272 pp. | Zbl
[21] Samarskii A. A., Teoriya raznostnykh skhem, 2-e izd, Nauka, M., 1983, 616 pp. | MR