Numerical Method of Value Boundary Problem Decision for 2D Equation of Heat Conductivity With Fractional Derivatives
Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 5 (2010), pp. 244-251.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this work a solution is obtained for the boundary problem for two-dimensional thermal conductivity equation with derivatives of fractional order on time and space variables by grid method. Explicit and implicit difference schemes are developed. Stability criteria of these difference schemes are proven. It is shown that approximation order by time equal but by space variables it equal two. A solution method is suggested using fractional steps. It is proved that the transition module, corresponding to two half-steps, approximates the transition module for given equation.
Keywords: numerical methods, stability, approximation of fractional derivatives, fractional differential equations.
@article{VSGTU_2010_5_a26,
     author = {V. D. Beybalaev and M. R. Shabanova},
     title = {Numerical {Method} of {Value} {Boundary} {Problem} {Decision} for {2D} {Equation} of {Heat} {Conductivity} {With} {Fractional} {Derivatives}},
     journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
     pages = {244--251},
     publisher = {mathdoc},
     number = {5},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGTU_2010_5_a26/}
}
TY  - JOUR
AU  - V. D. Beybalaev
AU  - M. R. Shabanova
TI  - Numerical Method of Value Boundary Problem Decision for 2D Equation of Heat Conductivity With Fractional Derivatives
JO  - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
PY  - 2010
SP  - 244
EP  - 251
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VSGTU_2010_5_a26/
LA  - ru
ID  - VSGTU_2010_5_a26
ER  - 
%0 Journal Article
%A V. D. Beybalaev
%A M. R. Shabanova
%T Numerical Method of Value Boundary Problem Decision for 2D Equation of Heat Conductivity With Fractional Derivatives
%J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
%D 2010
%P 244-251
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VSGTU_2010_5_a26/
%G ru
%F VSGTU_2010_5_a26
V. D. Beybalaev; M. R. Shabanova. Numerical Method of Value Boundary Problem Decision for 2D Equation of Heat Conductivity With Fractional Derivatives. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 5 (2010), pp. 244-251. http://geodesic.mathdoc.fr/item/VSGTU_2010_5_a26/

[1] Nigmatullin R. R., “Fractional integral and its physical interpretation”, Theoret. and Math. Phys., 90:3 (1992), 242–251 | DOI | MR | Zbl

[2] Goloviznin V. M., Kiselev V. P., Korotkin I. A., Yurko Yu. I., “Pryamye zadachi neklassicheskogo perenosa radionuklidov v geologicheskikh formatsiyakh”, Izv. RAN. Energetika, 2004, no. 4, 121–130

[3] Samko S.G., Kilbas A. A., Marichev O. I., Integraly i proizvodnye drobnogo poryadka i nekotorye ikh prilozheniya, Nauka i tekhnika, Minsk, 1987, 498 pp. | MR | Zbl

[4] Koltsova E. M., Vasilenko V. A., Tarasov V. V., “Chislennye metody resheniya uravnenii perenosa vo fraktalnykh sredakh”, Zhurn. fiz. khimii, 74:5 (2000), 954–956

[5] Goloviznin V. M., Kiselev V. P., Korotkin I. A., Yurko Yu. I., Nekotorye osobennosti vychislitelnykh algoritmov dlya uravneniya drobnoi diffuzii, Preprint No IBRAE-2002-01, IBRAE RAN, M., 2002, 57 pp.

[6] Goloviznin V. M., Kiselev V. P., Korotkin I. A., Chislennye metody resheniya uravneniya drobnoi diffuzii v odnomernom sluchae, Preprint No IBRAE-2002-10, IBRAE RAN, M., 2002, 35 pp.

[7] Goloviznin V. M., Korotkin I. A., “Numerical methods for some one-dimensional equations with fractional derivatives”, Differ. Equ., 42:7 (2006), 967–973 | DOI | MR | Zbl

[8] Meerschaert M. M., Tadjeran C., “Finite difference approximations for two-sided space-fractional partial differential equations”, Appl. Numer. Math., 56:1 (2006), 80–90 | DOI | MR | Zbl

[9] Meerschaert M. M., Tadjeran C., “Finite difference approximations for fractional advection-dispersion flow equations”, J. Comput. Appl. Math., 172:1 (2004), 65–77 | DOI | MR | Zbl

[10] Tadjeran C., Meerschaert M. M., Scheffler H.-P., “A second-order accurate numerical approximation for the fractional diffusion equation”, J. Comput. Phys., 213:1 (2006), 205–213 | DOI | MR | Zbl

[11] Lynch V. E., Carreras B. A., del-Castill-Negrete D., Ferreira-Mejias K. M., Hicks H. R., “Numerical methods for the solution of partial differential equations of fractional order”, J. Comput. Phys., 192:2 (2003), 406–421 | DOI | MR | Zbl

[12] Liu Q., Liu F., Turner I., Anh V., “Approximation of the Lévy-Feller advection-dispersion process by random walk and finite difference method”, J. Comput. Phys., 222:1 (2007), 57–70 | DOI | MR | Zbl

[13] Taukenova F. I., Shkhanukov-Lafishev M. Kh., “Difference methods for solving boundary value problems for fractional-order differential equations”, Comput. Math. Math. Phys., 46:10 (2006), 1785–1795 | DOI | MR

[14] Lafisheva M.M., Shkhanukov-Lafishev M.Kh., “A locally one-dimensional difference scheme for a fractional-order diffusion equation”, Comput. Math. Math. Phys., 48:10 (2008), 1875–1884 | DOI | MR | Zbl

[15] Alikhanov A. A., “Raznostnye metody resheniya kraevykh zadach dlya volnovogo uravneniya s drobnoi proizvodnoi po vremeni”, Vestn. Sam. gos. tekhn. un-ta. Ser. Fiz.-mat. nauki, 2008, no. 2(17), 13–20 | DOI

[16] Beibalaev V. D., “Matematicheskaya model teploperenosa v sredakh s fraktalnoi strukturoi”, Matem. modelirovanie, 21:5 (2009), 55–62 | MR

[17] Beibalaev V. D., “Chislennyi metod resheniya zadachi perenosa s dvustoronnei proizvodnoi drobnogo poryadka”, Vestn. Sam. gos. tekhn. un-ta. Ser. Fiz.-mat. nauki, 1(18) (2009), 267–270 | DOI

[18] Nazaraliev M. A., Beibalaev V. D., “Chislennye metody resheniya kraevoi zadachi dlya uravneniya teploperenosa s proizvodnoi drobnogo poryadka”, Vestn. DGU, 2008, no. 6, 46–53.

[19] Beibalaev V. D., “Chislennyi metod resheniya matematicheskoi modeli teploperenosa v sredakh s fraktalnoi strukturoi”, Fundamentalnye issledovaniya, 2007, no. 12, 249–251

[20] Nakhushev A. M., Elementy drobnogo ischisleniya i ikh primenenie, Fizmatlit, M., 2003, 272 pp. | Zbl

[21] Samarskii A. A., Teoriya raznostnykh skhem, 2-e izd, Nauka, M., 1983, 616 pp. | MR