Properties of Inversion Operator of the Abel Matrix Equation
Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 5 (2010), pp. 237-243.

Voir la notice de l'article provenant de la source Math-Net.Ru

Generalization of integral-differential Riemann–Liouville operator on the matrix order is reviewed and its properties are studied. Theorem of the composition of operators of the matrix of integration and differentiation can be proved. The necessary and sufficient conditions for the unique solvability of the matrix Abel equation in a special class of functions are obtained.
Mots-clés : fractional calculus
Keywords: integro-differential operator of Riemann–Liouville, functions of matrices, matrix operator, system of Abel integral equations.
@article{VSGTU_2010_5_a25,
     author = {R. R. Ismagiliva},
     title = {Properties of {Inversion} {Operator} of the {Abel} {Matrix} {Equation}},
     journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
     pages = {237--243},
     publisher = {mathdoc},
     number = {5},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGTU_2010_5_a25/}
}
TY  - JOUR
AU  - R. R. Ismagiliva
TI  - Properties of Inversion Operator of the Abel Matrix Equation
JO  - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
PY  - 2010
SP  - 237
EP  - 243
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VSGTU_2010_5_a25/
LA  - ru
ID  - VSGTU_2010_5_a25
ER  - 
%0 Journal Article
%A R. R. Ismagiliva
%T Properties of Inversion Operator of the Abel Matrix Equation
%J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
%D 2010
%P 237-243
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VSGTU_2010_5_a25/
%G ru
%F VSGTU_2010_5_a25
R. R. Ismagiliva. Properties of Inversion Operator of the Abel Matrix Equation. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 5 (2010), pp. 237-243. http://geodesic.mathdoc.fr/item/VSGTU_2010_5_a25/

[1] Beitman G., Erdein A., Vysshie transtsendentnye funktsii. T. 2, Nauka, M., 1973, 296 pp.

[2] Samko S. G., Kilbas A. A., Marichev O. I., Integraly i proizvodnye drobnogo poryadka i nekotorye ikh prilozheniya, Nauka i tekhnika, Mn., 1987, 688 pp. | MR | Zbl

[3] Nakhushev A. M., Drobnoe ischislenie i ego primenenie, Fizmalit, M., 2003, 272 pp. | Zbl

[4] Andreev A. A., “Nelokalnye kraevye zadachi dlya odnoi modelnoi vyrozhdayuscheisya sistemy giperbolicheskogo tipakh”, Kraevye zadachi dlya uravnenii matematicheskoi fiziki, Kuibysh. gos. ped. in-t, Kuibyshev, 1990, 3–7

[5] Andreev A. A., “Ob odnom obobschenii operatorov drobnogo integrodifferentsirovaniya i ego prilozheniyakh”, Integralnye uravneniya i kraevye zadachi matematicheskoi fiziki, Mater. Vsessoyuzn. konf, Vladivostok, 1990, 91

[6] Andreev A. A., Ogorodnikov E. N., “Matrichnye integrodifferentsialnye operatory i ikh primenenie”, Vestn. Sam. gos. tekhn. un-ta. Ser. Fiz.-mat. nauki, 1999, no. 7, 27–37 | DOI

[7] Andreev A. A., Kilbas A. A., “O nekotorykh assotsiirovannykh gipergeometricheskikh funktsiya”, Izv. vuzov. Matematika, 1984, no. 12, 3–12 | Zbl

[8] Gantmakher F. R., Teoriya matrits, Nauka, M., 1967, 567 pp. | MR