On the Stability of Hybrid Homogeneous Systems
Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 5 (2010), pp. 24-32.

Voir la notice de l'article provenant de la source Math-Net.Ru

The hybrid system consisting of the family of subsystems with homogeneous right-hand sides and a switching law is considered. It is assumed that the zero solution of each subsystem is asymptotically stable. By the use of the Lyapunov functions method, the classes of admissible switching laws are determined under which the corresponding hybrid system is also asymptotically stable. The region of asymptotic stability of the zero solution is investigated.
Keywords: switched systems, stability, homogeneous systems, Lyapunov functions, region of asymptotic stability.
@article{VSGTU_2010_5_a2,
     author = {A. Yu. Aleksandrov and A. V. Platonov},
     title = {On the {Stability} of {Hybrid} {Homogeneous} {Systems}},
     journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
     pages = {24--32},
     publisher = {mathdoc},
     number = {5},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGTU_2010_5_a2/}
}
TY  - JOUR
AU  - A. Yu. Aleksandrov
AU  - A. V. Platonov
TI  - On the Stability of Hybrid Homogeneous Systems
JO  - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
PY  - 2010
SP  - 24
EP  - 32
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VSGTU_2010_5_a2/
LA  - ru
ID  - VSGTU_2010_5_a2
ER  - 
%0 Journal Article
%A A. Yu. Aleksandrov
%A A. V. Platonov
%T On the Stability of Hybrid Homogeneous Systems
%J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
%D 2010
%P 24-32
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VSGTU_2010_5_a2/
%G ru
%F VSGTU_2010_5_a2
A. Yu. Aleksandrov; A. V. Platonov. On the Stability of Hybrid Homogeneous Systems. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 5 (2010), pp. 24-32. http://geodesic.mathdoc.fr/item/VSGTU_2010_5_a2/

[1] D. Liberzon, A. S. Morse, “Basic problems in stability and design of switched systems”, Control Systems Magazine, IEEE, 19:5 (1999), 59–70 | DOI

[2] R. A. Decarlo, M. S. Branicky, S. Pettersson, B. Lennartson, “Perspectives and results on the stability and stabilizability of hybrid systems”, Proc. of the IEEE, 88:7 (2000), 1069–1082 | DOI

[3] G. Zhai, B. Hu, K. Yasuda, A. N. Michel, “Disturbance attenuation properties of time-controlled switched systems”, J. of the Franklin Institute, 338:7 (2001), 765–779 | DOI | MR | Zbl

[4] V. I. Zubov, Ustoichivost dvizheniya, Vyssh. shk., M., 1973, 272 pp. | MR | Zbl

[5] L. Rosier, “Homogeneous Lyapunov function for homogeneous continuous vector field”, Systems and Control Letters, 19:6 (1992), 467–473 | DOI | MR | Zbl

[6] Zh. La-Sall, S. Lefshets, Issledovanie ustoichivosti pryamym metodom Lyapunova, Mir, M., 1964, 168 pp. | Zbl