About one Method of Obtaining of the Exact Analytical Decision of the Hyperbolic Equation of Heat Conductivity on the Basis of Use of Orthogonal Methods
Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 5 (2010), pp. 159-169.

Voir la notice de l'article provenant de la source Math-Net.Ru

On the basis of use of a method of division of variables and an orthogonal method of Bubnov–Galyorkin the exact analytical decision of the hyperbolic equation of heat conductivity for an infinite plate under boundary conditions of the first sort is obtained. It is shown that having warmed up (or cooled)a body it is defined by movement of front of a shock thermal wave on which there is a breakage temperature curve (temperature jump). The front of a thermal wave divides investigated area on two subareas — revolted where the temperature changes from wall temperature (a boundary condition of the first sort) to the temperature at the front waves and not revolted where the temperature is equal to reference temperature.
Keywords: hyperbolic equation, analytical decision, shock thermal wave front, thermal wave speed, relaxation time.
@article{VSGTU_2010_5_a17,
     author = {V. A. Kudinov and I. V. Kudinov},
     title = {About one {Method} of {Obtaining} of the {Exact} {Analytical} {Decision} of the {Hyperbolic} {Equation} of {Heat} {Conductivity} on the {Basis} of {Use} of {Orthogonal} {Methods}},
     journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
     pages = {159--169},
     publisher = {mathdoc},
     number = {5},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGTU_2010_5_a17/}
}
TY  - JOUR
AU  - V. A. Kudinov
AU  - I. V. Kudinov
TI  - About one Method of Obtaining of the Exact Analytical Decision of the Hyperbolic Equation of Heat Conductivity on the Basis of Use of Orthogonal Methods
JO  - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
PY  - 2010
SP  - 159
EP  - 169
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VSGTU_2010_5_a17/
LA  - ru
ID  - VSGTU_2010_5_a17
ER  - 
%0 Journal Article
%A V. A. Kudinov
%A I. V. Kudinov
%T About one Method of Obtaining of the Exact Analytical Decision of the Hyperbolic Equation of Heat Conductivity on the Basis of Use of Orthogonal Methods
%J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
%D 2010
%P 159-169
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VSGTU_2010_5_a17/
%G ru
%F VSGTU_2010_5_a17
V. A. Kudinov; I. V. Kudinov. About one Method of Obtaining of the Exact Analytical Decision of the Hyperbolic Equation of Heat Conductivity on the Basis of Use of Orthogonal Methods. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 5 (2010), pp. 159-169. http://geodesic.mathdoc.fr/item/VSGTU_2010_5_a17/

[1] Vlasov A. A., Statisticheskie funktsii raspredeleniya, Nauka, M., 1966, 355 pp. | MR | Zbl

[2] Shashkov A. G., Bubnov. V. A., Yanovskii S. Yu., Volnovye yavleniya teploprovodnosti: sistemno-strukturnyi podkhod, Editorial URSS, M., 2004, 296 pp.

[3] Lykov A. V., Teoriya teploprovodnosti, Vyssh. shk., M., 1967, 600 pp. | Zbl

[4] Lykov A. V., Teplomassoperenos, Energiya, M., 1971, 560 pp.

[5] Baumeister K., Khatill T., “Giperbolicheskoe uravnenie teploprovodnosti. Reshenie zadachi o polubeskonechnom tele”, Teploperedacha, 1969, no. 4, 112–119

[6] Zhou D., Kasas-Baskes Kh., Lebon D. Zh., Rasshirennaya neobratimaya termodinamika, RKhD, M.–Izhevsk, 2006, 528 pp.

[7] Kudinov V. A., Kartashov E. M., Kalashnikov V. V., Analiticheskie resheniya zadach teplomassoperenosa i termouprugosti dlya mnogosloinykh konstruktsii, Vyssh. shk., M., 2005, 430 pp.

[8] Kudinov V. A., Averin B. V., Stefanyuk E. V., Teploprovodnost i termouprugost v mnogosloinykh konstruktsiyakh, Vyssh. shk., M., 2008, 391 pp.