Asymptotic Analysis of Hydraulic Fracture Crack Process Growth
Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 5 (2010), pp. 105-116.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this work the self-similar solution of a problem of propagation of hydraulic fracture crack is presented. It is proposed that a crack is focused vertically and research of of its development process is analyzed within the coupled problem of the hydrodynamics theory (flow of viscous fluids) and the linear theory of elasticity (fracture crack growth). Asymptotics of the self-similar solution at the long and small distances from tip of a crack were obtained. Simple approximations of the solution in all length range are offered.
Keywords: hydraulic fracture crack, self-similar solution, asymptomatically analysis.
@article{VSGTU_2010_5_a11,
     author = {V. I. Astaf'ev},
     title = {Asymptotic {Analysis} of {Hydraulic} {Fracture} {Crack} {Process} {Growth}},
     journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
     pages = {105--116},
     publisher = {mathdoc},
     number = {5},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGTU_2010_5_a11/}
}
TY  - JOUR
AU  - V. I. Astaf'ev
TI  - Asymptotic Analysis of Hydraulic Fracture Crack Process Growth
JO  - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
PY  - 2010
SP  - 105
EP  - 116
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VSGTU_2010_5_a11/
LA  - ru
ID  - VSGTU_2010_5_a11
ER  - 
%0 Journal Article
%A V. I. Astaf'ev
%T Asymptotic Analysis of Hydraulic Fracture Crack Process Growth
%J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
%D 2010
%P 105-116
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VSGTU_2010_5_a11/
%G ru
%F VSGTU_2010_5_a11
V. I. Astaf'ev. Asymptotic Analysis of Hydraulic Fracture Crack Process Growth. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 5 (2010), pp. 105-116. http://geodesic.mathdoc.fr/item/VSGTU_2010_5_a11/

[1] Zheltov Yu. P., “O gidravlicheskom razryve neftenosnogo plasta”, Izv. AN SSSR. OTN., 1955, no. 5, 3–41

[2] Loitsyanskii A. G., Mekhanika zhidkosti i gaza, Drofa, M., 2003, 840 pp.

[3] Parton V. Z., Perlin P. I., Integralnye uravneniya teorii uprugosti, Nauka, M., 1977, 312 pp. | MR

[4] Cherepanov G. P., Mekhanika khrupkogo razrusheniya, Nauka, M., 1974, 640 pp. | Zbl

[5] Garagash D., Detournay E., “The Tip Region of a Fluid-Driven Fracture in an Elastic Medium”, J. Appl. Mech., 67:1 (2000), 183–192 | DOI | Zbl

[6] Barenblatt G. I., Podobie, avtomodelnost i promezhutochnaya asimptotika, Gidrometeoizdat, L., 1982, 256 pp. | MR

[7] Pergament A. Kh., Ulkin D. A., Avtomodelnye asimptotiki v zadache o rasprostranenii treschiny gidrorazryva v plosko-deformirovannoi srede, Preprint instituta prikladnoi matematiki im. M. V. Keldysha RAN, M., 2007, 31 pp. | Zbl

[8] Garagash D., Detournat E., “Similarity solution of a semi-infinite fluid-driven fracture in a linear elastic solid”, Comptes Rendus de l'Académie des Sciences - Series IIB - Mechanics-Physics-Chemistry-Astronomy, 326:5 (1998), 285–292 | DOI | Zbl

[9] Astafev V. I., Fedorchenko G. D., “Avtomodelnoe reshenie zadachi o razvitii treschiny gidrorazryva plasta”, Vestn. SamGU. Estestvennonauchn. ser., 2007, no. 4(54), 34–41

[10] Zazovskii A. A., Odishariya M. G., Peslyak Yu. A., “Avtomodelnye resheniya zadachi o rasprostranenii treschiny gidrorazryva v nepronitsaemoi gornoi porode”, Izv. AN SSSR. MTT, 1986, no. 5, 92–100

[11] Rais D. Zh., “Matematicheskie metody v mekhanike razrusheniya”, Razrushenie, v. 2, Matematicheskie osnovy teorii razrusheniya, ed. G. Libovits, Mir, M., 1975, 204–335