Reinforcement of Planar Structures along Orthogonal Curvilinear Trajectories
Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 5 (2010), pp. 96-104.

Voir la notice de l'article provenant de la source Math-Net.Ru

The resolving equations for linear orthotropic non-homogeneous elasticity problem, including the deformation compatibility equation, are obtained in cases of bipolar, elliptic, parabolic, hyperbolic and cardioidal coordinate systems for planar constructions extreme deformations detection in the context of planar problem. The type of obtained partial differential equations system for deformations tenser components is examined using the determinantal method.
Keywords: reinforcement, structural model, curvilinear trajectories.
@article{VSGTU_2010_5_a10,
     author = {Yu. V. Nemirovsky and N. A. Feodorova},
     title = {Reinforcement of {Planar} {Structures} along {Orthogonal} {Curvilinear} {Trajectories}},
     journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
     pages = {96--104},
     publisher = {mathdoc},
     number = {5},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGTU_2010_5_a10/}
}
TY  - JOUR
AU  - Yu. V. Nemirovsky
AU  - N. A. Feodorova
TI  - Reinforcement of Planar Structures along Orthogonal Curvilinear Trajectories
JO  - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
PY  - 2010
SP  - 96
EP  - 104
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VSGTU_2010_5_a10/
LA  - ru
ID  - VSGTU_2010_5_a10
ER  - 
%0 Journal Article
%A Yu. V. Nemirovsky
%A N. A. Feodorova
%T Reinforcement of Planar Structures along Orthogonal Curvilinear Trajectories
%J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
%D 2010
%P 96-104
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VSGTU_2010_5_a10/
%G ru
%F VSGTU_2010_5_a10
Yu. V. Nemirovsky; N. A. Feodorova. Reinforcement of Planar Structures along Orthogonal Curvilinear Trajectories. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 5 (2010), pp. 96-104. http://geodesic.mathdoc.fr/item/VSGTU_2010_5_a10/

[1] A. Lyav, Matematicheskaya teoriya uprugosti, ONTI, M., 1935, 674 pp.

[2] Yu. V. Nemirovsky, “On the elastic-plastic behaviour of the reinforced layer”, Int. J. Mech. Sci., 1970, no. 12, 898–903

[3] S. P. Demidov, Teoriya uprugosti, Vyssh. shk., M., 1979, 432 pp.

[4] S. P. Timoshenko, Dzh. Guder, Teoriya uprugosti, Nauka, M., 1979, 560 pp.

[5] M. A. Lavrentev, B. V. Shabat, Metody teorii funktsii kompleksnogo peremennogo, Nauka, M., 1987, 688 pp. | MR | Zbl

[6] I. G. Petrovskii, Lektsii ob uravneniyakh s chastnymi proizvodnymi, Fizmatgiz, M., 1961, 400 pp. | MR

[7] A. V. Bitsadze, Nekotorye klassy uravnenii v chastnykh proizvodnykh, Nauka, M., 1981, 448 pp. | MR | Zbl

[8] A. V. Bitsadze, Uravneniya matematicheskoi fiziki, Nauka, M., 1982, 336 pp. | MR

[9] Yu. V. Nemirovskii, V. D. Kurguzov, “Prochnost i zhëstkost stenovykh zhelezobetonnykh panelei so slozhnymi strukturami armirovaniya”, Izvest. vuzov. Stroitelstvo, 2003, no. 2, 4–11