Some Aspects of Initial Value Problems Theory for Differential Equations with Riemann--Liouville Derivatives
Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 5 (2010), pp. 10-23.

Voir la notice de l'article provenant de la source Math-Net.Ru

Some subjects of the well-formed initial value problems for ordinary differential equations with Riemann–Liouville derivatives are discussed. As an example the simplest linear homogeneous differential equation with two fractional derivatives is cited. It's shown, that the requirement of the highest derivative summability influence the value of the lowest derivative order or the initial values in Cauchy type conditions. The specific class of functions, allowing the non-summability of the highest derivative, is introduced. The correctness of the modified Cauchy type problem and initial value problems with local and nonlocal conditions is substantiated.
Mots-clés : fractional calculus
Keywords: fractional differential equations, Riemann–Liouville derivatives, Cauchy type problem.
@article{VSGTU_2010_5_a1,
     author = {E. N. Ogorodnikov},
     title = {Some {Aspects} of {Initial} {Value} {Problems}  {Theory} for {Differential} {Equations} with  {Riemann--Liouville} {Derivatives}},
     journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
     pages = {10--23},
     publisher = {mathdoc},
     number = {5},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGTU_2010_5_a1/}
}
TY  - JOUR
AU  - E. N. Ogorodnikov
TI  - Some Aspects of Initial Value Problems  Theory for Differential Equations with  Riemann--Liouville Derivatives
JO  - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
PY  - 2010
SP  - 10
EP  - 23
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VSGTU_2010_5_a1/
LA  - ru
ID  - VSGTU_2010_5_a1
ER  - 
%0 Journal Article
%A E. N. Ogorodnikov
%T Some Aspects of Initial Value Problems  Theory for Differential Equations with  Riemann--Liouville Derivatives
%J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
%D 2010
%P 10-23
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VSGTU_2010_5_a1/
%G ru
%F VSGTU_2010_5_a1
E. N. Ogorodnikov. Some Aspects of Initial Value Problems  Theory for Differential Equations with  Riemann--Liouville Derivatives. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 5 (2010), pp. 10-23. http://geodesic.mathdoc.fr/item/VSGTU_2010_5_a1/

[1] Samko S. G., Kilbas A. A., Marichev O. I., Integraly i proizvodnye drobnogo poryadka i nekotorye ikh prilozheniya, Nauka i tekhnika, Minsk, 1987, 688 pp. | MR | Zbl

[2] Kilbas A. A., Srivastava H. M., Trujillo J. J., “Theory and Applications of Fractional Differential Equations”, North-Holland Mathematics Studies, 204, ed. J. van Mill, Elsevier, Amsterdam, 2006, 523 pp. | MR | Zbl

[3] Podlubny I., “Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, Some Methods of Their Solution and Some of Their Applications”, Mathematics in Science and Engineering, 198, Academic Press, San Diego, 1999, 340 pp. | MR | Zbl

[4] Miller K. S., Ross B., An introduction to the fractional calculus and fractional differential equations, Jon Wiley Sons. Inc., New York, 1993, 366 pp. | MR

[5] Nakhushev A. M., Drobnoe ischislenie i ego primenenie, Fizmatlit, M., 2003, 272 pp. | Zbl

[6] Pskhu A. V., Kraevye zadachi dlya differentsialnykh uravnenii s chastnymi proizvodnymi drobnogo i kontinualnogo poryadka, KBNTs RAN, Nalchik, 2005, 186 pp.

[7] Virchenko N. O., Ribak V. Ya., Osnovi drobovogo integro-differentsirovannya, Zadruga, Kiïv, 2007, 361 pp. | MR | Zbl

[8] Kolmogorov A. N., Fomin A. N., Elementy teorii funktsii i funktsionalnogo analiza, Nauka, M., 1968, 496 pp. | MR | Zbl

[9] Dzhrbashyan M. M., Integralnye preobrazovaniya i predstavleniya funktsii v kompleksnoi oblasti, Nauka, M., 1966, 672 pp.

[10] Ogorodnikov E. N., “O nekotorykh kraevykh zadachakh dlya sistemy uravnenii Bitsadze"– Lykova s involyutivnoi matritsei”, Tr. Desyatoi mezhvuzovskoi nauchn. konf. Ch. $3$, Differentsialnye uravneniya i kraevye zadachi, Mat. modelirovanie i kraevye zadachi, SamGTU, Samara, 2000, 119–126

[11] Ogorodnikov E. N., Yashagin N. S., “Postanovka i reshenie zadach tipa Koshi dlya differentsialnykh uravnenii vtorogo poryadka s drobnymi proizvodnymi Rimana–Liuvillya”, Vestn. Sam. gos. tekhn. un-ta. Ser. Fiz.-mat. nauki, 2010, no. 1(20), 24–36 | DOI

[12] Ogorodnikov E. N., “Korrektnost zadachi Koshi–Gursa dlya sistemy vyrozhdayuschikhsya nagruzhennykh giperbolicheskikh uravnenii v nekotorykh spetsialnykh sluchayakh i eë ravnosilnost zadacham s nelokalnymi kraevymi usloviyami”, Vestn. Sam. gos. tekhn. un-ta. Ser. Fiz.-mat. nauki, 2004, no. 26, 26–38 | DOI

[13] Ogorodnikov E. N., Arlanova E. Yu., “Nekotorye nelokalnye analogi zadachi Koshi–Gursa i suschestvenno nelokalnye kraevye zadachi dlya sistem uravnenii Bitsadze–Lykova v spetsialnykh sluchayakh”, Vestn. Sam. gos. tekhn. un-ta. Ser. Fiz.-mat. nauki, 2005, no. 24, 24–39 | DOI

[14] Ogorodnikov E. N., Yashagin N. S., “O nekotorykh svoistvakh operatorov s funktsiei Mittag"– Lefflera v yadrakh”, Differentsialnye uravneniya i kraevye zadachi, Tr. Shestoi Vserossiisk. nauchn. konf. s mezhdunar. uchastiem. Ch. 3, Mat. modelirovanie i kraevye zadachi, SamGTU, Samara, 2009, 181–188

[15] Ogorodnikov E. N., “O zadache Koshi dlya modelnykh differentsialnykh uravnenii drobnykh ostsillyatorov”, Sovremennye problemy vychislitelnoi mat. i mat. fiziki, Tezisy dokladov Mezhdunar. konferentsii (Moskva, MGU, 16–18 iyunya 2009 g.), VMK MGU; MAKS Press, M., 2009, 229–231

[16] Ogorodnikov E. N., Yashagin N. S., “Nekotorye spetsialnye funktsii v reshenii zadachi Koshi dlya odnogo drobnogo ostsillyatsionnogo uravneniya”, Vestn. Sam. gos. tekhn. un-ta. Ser. Fiz.-mat. nauki, 2009, no. 1(18), 276–279 | DOI

[17] Pskhu A. V., “K teorii zadachi Koshi dlya lineinogo obyknovennogo differentsialnogo uravneniya drobnogo poryadka”, Doklady Adygskoi (Cherkesskoi) Mezhdunarodnoi akademii nauk, 11:1 (2009), 61–65

[18] Pskhu A. V., “K teorii zadachi Koshi dlya lineinogo obyknovennogo differentsialnogo uravneniya drobnogo poryadka”, Differentsialnye uravneniya i kraevye zadachi, Tr. Sedmoi Vserossiiskoi nauchn. konf. s mezhdunar. uchastiem. Ch. 3, Mat. modelirovanie i kraevye zadachi, SamGTU, Samara, 2010, 248–251

[19] Pskhu A. V., “Nachalnaya zadacha dlya lineinogo obyknovennogo differentsialnogo uravneniya drobnogo poryadka”, Uravneniya smeshannogo tipa i rodstvennye problemy analiza i informatiki, Materialy Mezhdunarodnogo Rossiisko-Bolgarskogo simpoziuma, Nalchik–Khabez, 2010, 194–196

[20] Chadaev V. A., “Vidoizmenënnaya zadacha Koshi v lokalno-nelokalnoi postanovke dlya nelineinogo mezhdupredelnogo differentsialnogo uravneniya”, Doklady Adygskoi (Cherkesskoi) Mezhdunarodnoi akademii nauk, 11:1 (2009), 93–96

[21] Chadaev V. A., “Zadacha Koshi v lokalno-nelokalnoi postanovke dlya nelineinogo uravneniya drobnogo poryadka v opredelënnom klasse”, Vestn. Sam. gos. tekhn. un-ta. Ser. Fiz.-mat. nauki, 2010, no. 1(20), 214–217 | DOI

[22] Chadaev V. A., “Zadacha Koshi v lokalno-nelokalnoi postanovke dlya kvazilineinogo mezhdupredelnogo differentsialnogo uravneniya s peremennymi koeffitsientami v vybrannom klasse”, Differentsialnye uravneniya i kraevye zadachi, Tr. Sedmoi Vserossiisk. nauchn. konf. s mezhdunar. uchastiem. Ch. 3, Mat. modelirovanie i kraevye zadachi, SamGTU, Samara, 2010, 281–282

[23] Barrett I. H., “Differential equations of non-integer oder”, Canad. J. Math, 6:4 (1954), 529–541 | DOI | MR | Zbl