Boundary Integral Equation Method for Holomorphic Vector for Problems Monitoring Elasticity Field
Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 1 (2010), pp. 96-103.

Voir la notice de l'article provenant de la source Math-Net.Ru

Consideration is given to a class of non-classical problems in elasticity theory which concerns the restoration of a full tensor of stresses in a body in the case where for one part of the body surface the loading vector and the displacement vector are prescribed, for other parts vector of displacements or vector of loads is known and for some parts of the body surface (its measure is not equal zero) the conditions are unknown. For solving of this problem boundary integral equations method for the holomorphic vector is proposed. It is shown that this method is efficient and can be applied to the non-classical problems of mechanics.
Keywords: boundary integral equation, non-classical problems in elasticity, monitoring problems, elasticity fields.
@article{VSGTU_2010_1_a9,
     author = {A. A. Schwab},
     title = {Boundary {Integral} {Equation} {Method} for {Holomorphic} {Vector} for {Problems} {Monitoring} {Elasticity} {Field}},
     journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
     pages = {96--103},
     publisher = {mathdoc},
     number = {1},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGTU_2010_1_a9/}
}
TY  - JOUR
AU  - A. A. Schwab
TI  - Boundary Integral Equation Method for Holomorphic Vector for Problems Monitoring Elasticity Field
JO  - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
PY  - 2010
SP  - 96
EP  - 103
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VSGTU_2010_1_a9/
LA  - ru
ID  - VSGTU_2010_1_a9
ER  - 
%0 Journal Article
%A A. A. Schwab
%T Boundary Integral Equation Method for Holomorphic Vector for Problems Monitoring Elasticity Field
%J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
%D 2010
%P 96-103
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VSGTU_2010_1_a9/
%G ru
%F VSGTU_2010_1_a9
A. A. Schwab. Boundary Integral Equation Method for Holomorphic Vector for Problems Monitoring Elasticity Field. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 1 (2010), pp. 96-103. http://geodesic.mathdoc.fr/item/VSGTU_2010_1_a9/

[1] G. L. Kosarev, E. Z. Rizaev, K. Sudo, “Opredelenie parametrov ochagov zemlyatresenii po nablyudaemym ostatochnym smescheniyam zemnoi poverkhnosti”, Dokl. AN SSSR, 288:4 (1986), 75–81

[2] A. A. Shvab, “Neklassicheskaya uprugo-plasticheskaya zadacha”, Izv. AN SSSR. Mekh. tvërd. tela, 1988, no. 1, 140–146

[3] A. A. Shvab, “Nekorrektnye staticheskie zadachi teorii uprugosti”, Izv. AN SSSR. Mekh. tvërd. tela, 1989, no. 6, 98–105

[4] S. Kubo, “Inverse problems related of the mechanics and fracture of solids and structures”, JSME, Int. J. Ser. 1, 31:2 (1988), 157–161

[5] Z. Gao, T. Mura, “Elasticity problems with partially overspecified boundary conditions”, International Journal of Engineering Science, 29:6 (1991), 685–692 | DOI | Zbl

[6] M. Tanaka, Y. Masuda, “Boundary element method applied to some inverse problems”, Engineering Analysis, 3:3 (1986), 138–143 | DOI

[7] L. Marin, D. Háo, D. Lesnic, “Conjugate Gradient–Boundary Element Method for the Cauchy Problem in Elasticity”, Quart. J. Mech. Appl. Math., 55:2 (2002), 227–247 | DOI | MR | Zbl

[8] L. Marin, L. Elliott, D. B. Ingham, D. Lesnic, “Boundary Element Regularisation Methods for Solving the Cauchy Problem in Linear Elasticity”, Inverse Problems in Science and Engineering, 10:4 (2002), 335–337 | DOI

[9] L. Marin, D. Lesnic, “BEM first-order regularisation method in linear elasticity for boundary identification”, Comput. Methets Appl. Mech. Engrg., 192:16–18 (2003), 2059–2071 | DOI | MR | Zbl

[10] A. A. Schwab, “Nonclassical problems of deformed solid body”, 8-Symposium, Vervormung und Bruch, Magdeburg, 1988, 90

[11] R. Fueter, “Über die analytische Darstellung der regulären Funktionen einer Quaternionenvariablen”, Commentarii Mathematici Helvetici, 8:1 (1935), 371–378 | DOI | MR

[12] Gr. Moisil, N. Théodoresco, “Fonctions holomorphes dans l'espace”, Mathematica, Cluj, 5 (1931), 142–159 | Zbl

[13] A. V. Bitsadze, Osnovy teorii analiticheskikh funktsii, Nauka, M., 1984 | MR

[14] A. A. Shvab, “Ob odnoi lokalnoi zadache prodolzheniya”, Dinamika sploshnoi sredy. Vyp. 92, IgIL SO AN SSSR, Novosibirsk, ???, 103–105