Method of Duhamel Integral for Ordinary Differential Equations with Constant Coefficients in Respect to the Theory of Distributions
Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 1 (2010), pp. 37-45.

Voir la notice de l'article provenant de la source Math-Net.Ru

A new proof for the method of Duhamel integral is produced. This proof is based on the convolution algebra of distributions and allows to extend this method for the region $x0$. Universal formulas for solving equations with discontinuos right-hand side are obtained.
Keywords: Duhamel integral, space of distributions
Mots-clés : convolution of distributions, convolution of distributions, convolution algebra.
@article{VSGTU_2010_1_a3,
     author = {I. L. Kogan},
     title = {Method of {Duhamel} {Integral} for {Ordinary} {Differential} {Equations} with {Constant} {Coefficients} in {Respect} to the {Theory} of {Distributions}},
     journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
     pages = {37--45},
     publisher = {mathdoc},
     number = {1},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGTU_2010_1_a3/}
}
TY  - JOUR
AU  - I. L. Kogan
TI  - Method of Duhamel Integral for Ordinary Differential Equations with Constant Coefficients in Respect to the Theory of Distributions
JO  - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
PY  - 2010
SP  - 37
EP  - 45
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VSGTU_2010_1_a3/
LA  - ru
ID  - VSGTU_2010_1_a3
ER  - 
%0 Journal Article
%A I. L. Kogan
%T Method of Duhamel Integral for Ordinary Differential Equations with Constant Coefficients in Respect to the Theory of Distributions
%J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
%D 2010
%P 37-45
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VSGTU_2010_1_a3/
%G ru
%F VSGTU_2010_1_a3
I. L. Kogan. Method of Duhamel Integral for Ordinary Differential Equations with Constant Coefficients in Respect to the Theory of Distributions. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 1 (2010), pp. 37-45. http://geodesic.mathdoc.fr/item/VSGTU_2010_1_a3/

[1] M. A. Lavrentev, B. V. Shabat, Metody teorii funktsii kompleksnogo peremennogo, Nauka, M., 1987 | MR | Zbl

[2] L. Shvarts, Matematicheskie metody dlya fizicheskikh nauk, Mir, M., 1965 | MR

[3] V. S. Vladimirov, Obobschënnye funktsii v matematicheskoi fizike, Nauka, M., 1979 | MR

[4] I. M. Gelfand, G. E. Shilov, Obobschënnye funktsii i deistviya nad nimi. Vyp. 1, Dobrosvet, M., 2000 | Zbl