Non-classic 3D Goursat Problem for One Hyperbolic Equation with~Discontinuous Coefficients
Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 1 (2010), pp. 209-213.

Voir la notice de l'article provenant de la source Math-Net.Ru

For a differential equation of hyperbolic type with discontinuous coefficients a 3D Goursat problem with nonclassical boundary conditions is considered, which requires no matching conditions. Equivalence of these conditions boundary condition is substantiated classical, in the case if the solution of the problem in the anisotropic S. L. Sobolev's space is found.
Keywords: hyperbolic equation, equation with discontinuous coefficients.
Mots-clés : 3D Goursat problem
@article{VSGTU_2010_1_a23,
     author = {I. G. Mamedov},
     title = {Non-classic {3D} {Goursat} {Problem} for {One} {Hyperbolic} {Equation} {with~Discontinuous} {Coefficients}},
     journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
     pages = {209--213},
     publisher = {mathdoc},
     number = {1},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGTU_2010_1_a23/}
}
TY  - JOUR
AU  - I. G. Mamedov
TI  - Non-classic 3D Goursat Problem for One Hyperbolic Equation with~Discontinuous Coefficients
JO  - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
PY  - 2010
SP  - 209
EP  - 213
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VSGTU_2010_1_a23/
LA  - ru
ID  - VSGTU_2010_1_a23
ER  - 
%0 Journal Article
%A I. G. Mamedov
%T Non-classic 3D Goursat Problem for One Hyperbolic Equation with~Discontinuous Coefficients
%J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
%D 2010
%P 209-213
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VSGTU_2010_1_a23/
%G ru
%F VSGTU_2010_1_a23
I. G. Mamedov. Non-classic 3D Goursat Problem for One Hyperbolic Equation with~Discontinuous Coefficients. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 1 (2010), pp. 209-213. http://geodesic.mathdoc.fr/item/VSGTU_2010_1_a23/

[1] A. V. Berezin, A. S. Vorontsov, M. B. Markov, B. D. Plyuschenkov, “O vyvode i reshenii uravnenii Maksvella v zadachakh s zadannym volnovym frontom”, Matem. modelirovanie, 18:4 (2006), 43–60 | MR | Zbl

[2] O. A. Koshcheeva, “Construction of the Riemann function for the Bianchi equation in an n-dimensional space”, Russian Math. (Iz. VUZ), 52:9 (2008), 35–40 | DOI | MR | Zbl

[3] V. I. Zhegalov, E. A. Utkina, “The Goursat problem for a three-dimensional equation with a higher derivative”, Russian Math. (Iz. VUZ), 45:11 (2001), 74–78 | MR | Zbl

[4] E. A. Utkina, “Ob odnoi trëkhmernoi zadache Gursa”, Vestn. Sam. gos. tekhn. un-ta. Ser. Fiz.-mat. nauki, 2001, no. 12, 30–35 | DOI

[5] O. M. Jokhadze, “The three-dimensional generalized Goursat problem for a third-order equation and related general two-dimensional Volterra integral equations of the first kind”, Differential Equations, 42:3 (2006), 412–421 | DOI | MR | Zbl

[6] B. Midodashvili, “Generalized Goursat problem for a spatial fourth order hyperbolic equation with dominated low terms”, Proc. of A. Razmadze Mathematical Institute, 138 (2005), 43–54 | MR | Zbl

[7] I. G. Mamedov, “A fundamental solution to the Cauchy problem for a fourth-order pseudoparabolic equation”, J. Comput. Math. Math. Phys., 49:1, 93–104 | DOI | MR | Zbl

[8] I. G. Mamedov, “On correct solvability of a problem with loaded boundary conditions for a fourth order pseudoparabolic equation”, Mem. Differential Equations Math. Phys., 43 (2008), 107–118 | MR | Zbl

[9] V. I. Zhegalov, “Trëkhmernyi analog zadachi Gursa”, Neklassicheskie uravneniya i uravneniya smeshannogo tipa, Novosibirsk, 1990, 94–98 | MR | Zbl

[10] V. I. Zhegalov, E. A. Utkina, “Pseudoparabolic equation of the third order”, Russian Math. (Iz. VUZ), 43:10 (1999), 70–73 | MR | Zbl

[11] M. E. Lerner, “O kachestvennykh svoistvakh funktsii Rimana”, Differents. uravneniya, 27:12 (1991), 2106–2119 | MR

[12] S. D. Troitskaya, “On a first boundary value problem for hyperbolic equations in the plane”, Mathematical Notes, 65:2 (1999), 242–252 | DOI | DOI | MR | Zbl

[13] I. G. Mamedov, “The local boundary value problem for an integro-differential equation”, Proc. Inst. Math. Mech., Azerb. Acad. Sci., 17 (2002), 96–101 | MR