Non-classic 3D Goursat Problem for One Hyperbolic Equation with~Discontinuous Coefficients
Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 1 (2010), pp. 209-213

Voir la notice de l'article provenant de la source Math-Net.Ru

For a differential equation of hyperbolic type with discontinuous coefficients a 3D Goursat problem with nonclassical boundary conditions is considered, which requires no matching conditions. Equivalence of these conditions boundary condition is substantiated classical, in the case if the solution of the problem in the anisotropic S. L. Sobolev's space is found.
Keywords: hyperbolic equation, equation with discontinuous coefficients.
Mots-clés : 3D Goursat problem
@article{VSGTU_2010_1_a23,
     author = {I. G. Mamedov},
     title = {Non-classic {3D} {Goursat} {Problem} for {One} {Hyperbolic} {Equation} {with~Discontinuous} {Coefficients}},
     journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
     pages = {209--213},
     publisher = {mathdoc},
     number = {1},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGTU_2010_1_a23/}
}
TY  - JOUR
AU  - I. G. Mamedov
TI  - Non-classic 3D Goursat Problem for One Hyperbolic Equation with~Discontinuous Coefficients
JO  - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
PY  - 2010
SP  - 209
EP  - 213
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VSGTU_2010_1_a23/
LA  - ru
ID  - VSGTU_2010_1_a23
ER  - 
%0 Journal Article
%A I. G. Mamedov
%T Non-classic 3D Goursat Problem for One Hyperbolic Equation with~Discontinuous Coefficients
%J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
%D 2010
%P 209-213
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VSGTU_2010_1_a23/
%G ru
%F VSGTU_2010_1_a23
I. G. Mamedov. Non-classic 3D Goursat Problem for One Hyperbolic Equation with~Discontinuous Coefficients. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 1 (2010), pp. 209-213. http://geodesic.mathdoc.fr/item/VSGTU_2010_1_a23/