On Solvability of a Certain Nonlocal Problem for a~Laplace Equation
Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 1 (2010), pp. 205-208.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this article, we prove the solvability of a nonlocal problem with integral conditions for the Laplace equation in a rectangular domain.
Keywords: nonlocal problem, integral condition, solvability.
@article{VSGTU_2010_1_a22,
     author = {N. V. Beylina},
     title = {On {Solvability} of a {Certain} {Nonlocal} {Problem} for {a~Laplace} {Equation}},
     journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
     pages = {205--208},
     publisher = {mathdoc},
     number = {1},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGTU_2010_1_a22/}
}
TY  - JOUR
AU  - N. V. Beylina
TI  - On Solvability of a Certain Nonlocal Problem for a~Laplace Equation
JO  - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
PY  - 2010
SP  - 205
EP  - 208
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VSGTU_2010_1_a22/
LA  - ru
ID  - VSGTU_2010_1_a22
ER  - 
%0 Journal Article
%A N. V. Beylina
%T On Solvability of a Certain Nonlocal Problem for a~Laplace Equation
%J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
%D 2010
%P 205-208
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VSGTU_2010_1_a22/
%G ru
%F VSGTU_2010_1_a22
N. V. Beylina. On Solvability of a Certain Nonlocal Problem for a~Laplace Equation. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 1 (2010), pp. 205-208. http://geodesic.mathdoc.fr/item/VSGTU_2010_1_a22/

[1] A. V. Bitsadze, A. A. Samarskii, “On some simple generalizations of linear elliptic boundary problems”, Sov. Math., Dokl., 10 (1969), 398–400 | Zbl

[2] A. L. Skubachevskii, “Nonlocal Elliptic Problems with a Parameter”, Mathematics of the USSR-Sbornik, 49:1 (1984), 197–206 | DOI | MR | Zbl

[3] A. K. Gushchin, V. P. Mikhailov, “On Solvability of Nonlocal Problems for a Second-Order Elliptic Equation”, Russian Academy of Sciences. Sbornik. Mathematics, 81:1 (1995), 101–136 | DOI | MR

[4] A. K. Gushchin, “A condition for the compactness of operators in a certain class and its application to the analysis of the solubility of non-local problems for elliptic equations”, Sbornik: Mathematics, 193:5 (2002), 649–668 | DOI | DOI | MR | Zbl