Voir la notice de l'article provenant de la source Math-Net.Ru
@article{VSGTU_2010_1_a21, author = {L. V. Loganova and D. L. Golovashkin and O. S. Syagailo}, title = {A {Parallel} {Algorithm} of the {Cyclic} {Reduction} {Method} in the {Periodic} {Boundary-Value} {Problem}}, journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences}, pages = {197--204}, publisher = {mathdoc}, number = {1}, year = {2010}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/VSGTU_2010_1_a21/} }
TY - JOUR AU - L. V. Loganova AU - D. L. Golovashkin AU - O. S. Syagailo TI - A Parallel Algorithm of the Cyclic Reduction Method in the Periodic Boundary-Value Problem JO - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences PY - 2010 SP - 197 EP - 204 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VSGTU_2010_1_a21/ LA - ru ID - VSGTU_2010_1_a21 ER -
%0 Journal Article %A L. V. Loganova %A D. L. Golovashkin %A O. S. Syagailo %T A Parallel Algorithm of the Cyclic Reduction Method in the Periodic Boundary-Value Problem %J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences %D 2010 %P 197-204 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/VSGTU_2010_1_a21/ %G ru %F VSGTU_2010_1_a21
L. V. Loganova; D. L. Golovashkin; O. S. Syagailo. A Parallel Algorithm of the Cyclic Reduction Method in the Periodic Boundary-Value Problem. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 1 (2010), pp. 197-204. http://geodesic.mathdoc.fr/item/VSGTU_2010_1_a21/
[1] A. A. Samarskii, P. N. Vabischevich, Vychislitelnaya teploperedacha, Editorial URSS, M., 2003
[2] N. N. Mirenkov, “Parallelnye algoritmy dlya resheniya zadach na odnorodnykh vychislitelnykh sistemakh”, Vychislitelnye sistemy, 1973, no. 57, 3–32 | Zbl
[3] L. N. Biryukova, B. N. Chetverushkin, “O vozmozhnosti realizatsii kvazigidrodinamicheskoi modeli poluprovodnikovoi plazmy na mnogoprotsessornykh vychislitelnykh sistemakh”, Matem. modelirovanie, 3:6 (1991), 61–71
[4] O. Yu. Milyukova, “A parallel variant of the generalized alternating triangular method for elliptic equations”, Comput. Math. Math. Phys., 38:12 (1998), 1922–1932 | MR | Zbl
[5] D. L. Golovashkin, “Parallelnye algoritmy resheniya setochnykh uravnenii trekhdiagonalnogo vida, osnovannogo na metode vstrechnykh progonok”, Matem. modelirovanie, 17:11 (2005), 118–128 | Zbl
[6] J. M. Ortega, Introduction to Parallel and Vector Solution of Linear Systems, Plenum Press, New York, 1988, 318 pp. ; Dzh. Ortega, Vvedenie v parallelnye i vektornye metody resheniya lineinykh sistem, Mir, M., 1991 | MR | Zbl | MR
[7] S. V. Yarmushkin, D. L. Golovashkin, “Issledovanie parallelnykh algoritmov resheniya trekhdiagonalnykh sistem lineinykh algebraicheskikh uravnenii”, Vestn. Sam. gos. tekhn. un-ta. Ser. Fiz.-mat. nauki, 26 (2004), 78–82 | DOI
[8] A. A. Samarskii, E. S. Nikolaev, Metody resheniya setochnykh uravnenii, Nauka, M., 1978, 561 pp. | MR
[9] L. V. Loganova, “Parallelnyi algoritm metoda tsiklicheskikh progonok”, Vestn. Sam. gos. aerokosm. un-ta, 2008, no. 2(15), 167–174
[10] G. Golub, Ch. van Loan, Matrix Computations, 3rd edit., Johns Hopkins University Press, 1996, 694 pp. ; Dzh. Golub, Ch. Van Loun, Matrichnye vychisleniya, Mir, M., 1999, 548 pp. | MR