A Parallel Algorithm of the Cyclic Reduction Method in the Periodic Boundary-Value Problem
Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 1 (2010), pp. 197-204.

Voir la notice de l'article provenant de la source Math-Net.Ru

We report constructing a parallel algorithm based on the cyclic reduction method in the boundary-value problem. Comparison with the familiar algorithms has been made. Results of the studies into the acceleration of the algorithm are discussed. The algorithm is shown to be highly efficient.
Keywords: cyclic reduction method, parallel algorithm.
@article{VSGTU_2010_1_a21,
     author = {L. V. Loganova and D. L. Golovashkin and O. S. Syagailo},
     title = {A {Parallel} {Algorithm} of the {Cyclic} {Reduction} {Method} in the {Periodic} {Boundary-Value} {Problem}},
     journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
     pages = {197--204},
     publisher = {mathdoc},
     number = {1},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGTU_2010_1_a21/}
}
TY  - JOUR
AU  - L. V. Loganova
AU  - D. L. Golovashkin
AU  - O. S. Syagailo
TI  - A Parallel Algorithm of the Cyclic Reduction Method in the Periodic Boundary-Value Problem
JO  - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
PY  - 2010
SP  - 197
EP  - 204
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VSGTU_2010_1_a21/
LA  - ru
ID  - VSGTU_2010_1_a21
ER  - 
%0 Journal Article
%A L. V. Loganova
%A D. L. Golovashkin
%A O. S. Syagailo
%T A Parallel Algorithm of the Cyclic Reduction Method in the Periodic Boundary-Value Problem
%J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
%D 2010
%P 197-204
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VSGTU_2010_1_a21/
%G ru
%F VSGTU_2010_1_a21
L. V. Loganova; D. L. Golovashkin; O. S. Syagailo. A Parallel Algorithm of the Cyclic Reduction Method in the Periodic Boundary-Value Problem. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 1 (2010), pp. 197-204. http://geodesic.mathdoc.fr/item/VSGTU_2010_1_a21/

[1] A. A. Samarskii, P. N. Vabischevich, Vychislitelnaya teploperedacha, Editorial URSS, M., 2003

[2] N. N. Mirenkov, “Parallelnye algoritmy dlya resheniya zadach na odnorodnykh vychislitelnykh sistemakh”, Vychislitelnye sistemy, 1973, no. 57, 3–32 | Zbl

[3] L. N. Biryukova, B. N. Chetverushkin, “O vozmozhnosti realizatsii kvazigidrodinamicheskoi modeli poluprovodnikovoi plazmy na mnogoprotsessornykh vychislitelnykh sistemakh”, Matem. modelirovanie, 3:6 (1991), 61–71

[4] O. Yu. Milyukova, “A parallel variant of the generalized alternating triangular method for elliptic equations”, Comput. Math. Math. Phys., 38:12 (1998), 1922–1932 | MR | Zbl

[5] D. L. Golovashkin, “Parallelnye algoritmy resheniya setochnykh uravnenii trekhdiagonalnogo vida, osnovannogo na metode vstrechnykh progonok”, Matem. modelirovanie, 17:11 (2005), 118–128 | Zbl

[6] J. M. Ortega, Introduction to Parallel and Vector Solution of Linear Systems, Plenum Press, New York, 1988, 318 pp. ; Dzh. Ortega, Vvedenie v parallelnye i vektornye metody resheniya lineinykh sistem, Mir, M., 1991 | MR | Zbl | MR

[7] S. V. Yarmushkin, D. L. Golovashkin, “Issledovanie parallelnykh algoritmov resheniya trekhdiagonalnykh sistem lineinykh algebraicheskikh uravnenii”, Vestn. Sam. gos. tekhn. un-ta. Ser. Fiz.-mat. nauki, 26 (2004), 78–82 | DOI

[8] A. A. Samarskii, E. S. Nikolaev, Metody resheniya setochnykh uravnenii, Nauka, M., 1978, 561 pp. | MR

[9] L. V. Loganova, “Parallelnyi algoritm metoda tsiklicheskikh progonok”, Vestn. Sam. gos. aerokosm. un-ta, 2008, no. 2(15), 167–174

[10] G. Golub, Ch. van Loan, Matrix Computations, 3rd edit., Johns Hopkins University Press, 1996, 694 pp. ; Dzh. Golub, Ch. Van Loun, Matrichnye vychisleniya, Mir, M., 1999, 548 pp. | MR