Setting and Solving of the Cauchy type problems for the Second Order Differential Equations with Riemann--Liouville Fractional Derivatives
Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 1 (2010), pp. 24-36.

Voir la notice de l'article provenant de la source Math-Net.Ru

The correctness of the Cauchy problems in local (classical) and nonlocal staging for two linear ordinary second order differential equations with Riemann–Liouville fractional derivatives is substantiated. The explicit solutions in terms of some special functions related Mittag–Leffler type function are found out. The continuos dependence from the fractional parameter $\beta$ for these solutions is indicated. For the second equation the changing statement of the Cauchy type problem coinciding with classical when $\beta=0$ is considered. These equations are proposed such as some model fractional oscillating equation.
Mots-clés : fractional calculus
Keywords: ordinary differential equations with Riemann–Liouville fractional derivatives, fractional oscillating equation, Cauchy type problem, Mittag–Leffler type functions.
@article{VSGTU_2010_1_a2,
     author = {E. N. Ogorodnikov and N. S. Yashagin},
     title = {Setting and {Solving} of the {Cauchy} type problems for the {Second} {Order} {Differential} {Equations} with {Riemann--Liouville} {Fractional} {Derivatives}},
     journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
     pages = {24--36},
     publisher = {mathdoc},
     number = {1},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGTU_2010_1_a2/}
}
TY  - JOUR
AU  - E. N. Ogorodnikov
AU  - N. S. Yashagin
TI  - Setting and Solving of the Cauchy type problems for the Second Order Differential Equations with Riemann--Liouville Fractional Derivatives
JO  - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
PY  - 2010
SP  - 24
EP  - 36
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VSGTU_2010_1_a2/
LA  - ru
ID  - VSGTU_2010_1_a2
ER  - 
%0 Journal Article
%A E. N. Ogorodnikov
%A N. S. Yashagin
%T Setting and Solving of the Cauchy type problems for the Second Order Differential Equations with Riemann--Liouville Fractional Derivatives
%J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
%D 2010
%P 24-36
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VSGTU_2010_1_a2/
%G ru
%F VSGTU_2010_1_a2
E. N. Ogorodnikov; N. S. Yashagin. Setting and Solving of the Cauchy type problems for the Second Order Differential Equations with Riemann--Liouville Fractional Derivatives. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 1 (2010), pp. 24-36. http://geodesic.mathdoc.fr/item/VSGTU_2010_1_a2/

[1] S. G. Samko, A. A. Kilbas, O. I. Marichev, Integraly i proizvodnye drobnogo poryadka i nekotorye ikh prilozheniya, Nauka i tekhnika, Minsk, 1987 | MR | Zbl

[2] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, “Theory and Applications of Fractional Differential Equations”, North-Holland Mathematics Studies, 204, ed. J. van Mill, Elsevier, Amsterdam, 2006 | MR | Zbl

[3] I. Podlubny, “Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, Some Methods of Their Solution and Some of Their Applications”, Mathematics in Science and Engineering, 198, Academic Press, San Diego, 1999 | MR | Zbl

[4] K. S. Miller, B. Ross, An introduction to the fractional calculus and fractional differential equations, Jon Wiley Sons. Inc., New York, 1993 | MR

[5] A. M. Nakhushev, Drobnoe ischislenie i ego primenenie, Fizmatlit, M., 2003 | Zbl

[6] A. M. Nakhushev, Uravneniya matematicheskoi biologii, Vysshaya shkola, M., 1995, 301 pp. | Zbl

[7] N. O. Virchenko, V. Ya. Ribak, Osnovi drobovogo integro-differentsirovannya, Zadruga, Ki\"iv, 2007 | MR | Zbl

[8] K. B. Oldham, J. Spanier, “The Fractional Calculus: Theory and Applications of Differentiation and Integration to Arbitrary Order”, Mathematics in Science and Engineering, 111, Academic Press, San Diego, 1974 | MR | Zbl

[9] A. A. Chikrii, I. I. Matichin, “Ob analoge formuly Koshi dlya lineinykh sistem proizvolnogo drobnogo poryadka”, Dopovidi Natsionalno\"i akademii nauk Ukra\"ini, 2007, no. 1, 50–55 | Zbl

[10] E. N. Ogorodnikov, “Matematicheskie modeli drobnykh ostsillyatorov, postanovka i struktura resheniya zadachi Koshi”, Tr. Shestoi Vseros. nauchn. konf. s mezhdunar. uchastiem. Ch. 1, Differentsialnye uravneniya i kraevye zadachi, Matem. modelirovanie i kraevye zadachi, SamGTU, Samara, 2009, 177–181

[11] F. G. Tricomi, “Integral Eguations”, Pure and Applied Mathematics, Vol. 5, Interscience, Inc., New York, 1957 ; F. Trikomi, Integralnye uravneniya, In. lit., M., 1960 | Zbl | MR

[12] M. M. Dzhrbashyan, Integralnye preobrazovaniya i predstavleniya funktsii v kompleksnoi oblasti, Nauka, M., 1966 | Zbl

[13] E. N. Ogorodnikov, “O nekotorykh kraevykh zadachakh dlya sistemy uravnenii Bitsadze"– Lykova s involyutivnoi matritsei”, Tr. desyatoi mezhvuz. nauch. konf. Ch. 3, Differentsialnye uravneniya i kraevye zadachi, Mat. modelirovanie i kraevye zadachi, SamGTU, Samara, 2000, 119–126

[14] E. N. Ogorodnikov, N. S. Yashagin, “O nekotorykh svoistvakh operatorov s funktsiei Mittag–Lefflera v yadrakh”, Tr. shestoi Vserossiiskoi nauchn. konf. s mezhdunar. uchastiem. Ch. 3, Differentsialnye uravneniya i kraevye zadachi, Mat. modelirovanie i kraevye zadachi, SamGTU, Samara, 2009, 181–188

[15] E. N. Ogorodnikov, “Korrektnost zadachi Koshi–Gursa dlya sistemy vyrozhdayuschikhsya nagruzhennykh giperbolicheskikh uravnenii v nekotorykh spetsialnykh sluchayakh i eë ravnosilnost zadacham s nelokalnymi kraevymi usloviyami”, Vestn. Sam. gos. tekhn. un-ta. Ser. Fiz.-mat. nauki, 2004, no. 26, 26–38 | DOI

[16] E. N. Ogorodnikov, N. S. Yashagin, “Nekotorye spetsialnye funktsii v reshenii zadachi Koshi dlya odnogo drobnogo ostsillyatsionnogo uravneniya”, Vestn. Sam. gos. tekhn. un-ta. Ser. Fiz.-mat. nauki, 2009, no. 1(18), 276–279 | DOI