Definition of Parameters of 2D Dynamical Processes on the Basis of Difference Schemes
Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 1 (2010), pp. 154-161.

Voir la notice de l'article provenant de la source Math-Net.Ru

The construction of difference schemes, describing the results of observations of 2D spatio-temporal functional dependencies and a numerical method for definition the parameters of such dependencies on the basis of difference schemes are considered. The algorithm of method including iteration procedure for mean-square estimation of coefficients of linear parametric discrete model in the form of stochastic difference equations. Such an approach to solving the problem of identification of 2D dynamic processes can ensure a high adequacy of a model, and as a consequence, to achieve high accuracy of estimating the parameters of the model.
Keywords: parametrical identification, difference scheme, root-mean-square approximation.
@article{VSGTU_2010_1_a16,
     author = {M. A. Zausaeva and V. E. Zoteev},
     title = {Definition of {Parameters} of {2D} {Dynamical} {Processes} on the {Basis} of {Difference} {Schemes}},
     journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
     pages = {154--161},
     publisher = {mathdoc},
     number = {1},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGTU_2010_1_a16/}
}
TY  - JOUR
AU  - M. A. Zausaeva
AU  - V. E. Zoteev
TI  - Definition of Parameters of 2D Dynamical Processes on the Basis of Difference Schemes
JO  - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
PY  - 2010
SP  - 154
EP  - 161
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VSGTU_2010_1_a16/
LA  - ru
ID  - VSGTU_2010_1_a16
ER  - 
%0 Journal Article
%A M. A. Zausaeva
%A V. E. Zoteev
%T Definition of Parameters of 2D Dynamical Processes on the Basis of Difference Schemes
%J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
%D 2010
%P 154-161
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VSGTU_2010_1_a16/
%G ru
%F VSGTU_2010_1_a16
M. A. Zausaeva; V. E. Zoteev. Definition of Parameters of 2D Dynamical Processes on the Basis of Difference Schemes. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 1 (2010), pp. 154-161. http://geodesic.mathdoc.fr/item/VSGTU_2010_1_a16/

[1] Zoteev V. E., Parametricheskaya identifikatsiya dissipativnykh mekhanicheskikh sistem na osnove raznostnykh uravnenii, ed. V. P. Radchenko, Mashinostroenie-1, M., 2009, 344 pp.

[2] Radchenko V. P., Goludin E. P., “Fenomenologicheskaya stokhasticheskaya model izotermicheskoi polzuchesti polivinilkhloridnogo plastikata”, Vestn. Sam. gos. tekhn. un-ta. Ser. Fiz.-mat. nauki, 2008, no. 1(16), 45–52 | DOI

[3] Radchenko V. P., Eremin Yu. A., Reologicheskoe deformirovanie i razrushenie materialov i elementov konstruktsii, Mashinostroenie-1, M., 2004, 265 pp.

[4] Kovalenko L. V., Popov N. N., Radchenko V. P., “Solution of the plane stochastic creep boundary value problem”, Journal of Applied Mathematics and Mechanics, 73:6, 727–733 | DOI | Zbl

[5] Popov N. N., Radchenko V. P., “Nonlinear stochastic creep problem for an inhomogeneous plane with the damage to the material taken into account”, Journal of Applied Mechanics and Technical Physics, 48:2 (2007), 265–270 | DOI | Zbl