Voir la notice de l'article provenant de la source Math-Net.Ru
@article{VSGTU_2010_1_a16, author = {M. A. Zausaeva and V. E. Zoteev}, title = {Definition of {Parameters} of {2D} {Dynamical} {Processes} on the {Basis} of {Difference} {Schemes}}, journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences}, pages = {154--161}, publisher = {mathdoc}, number = {1}, year = {2010}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/VSGTU_2010_1_a16/} }
TY - JOUR AU - M. A. Zausaeva AU - V. E. Zoteev TI - Definition of Parameters of 2D Dynamical Processes on the Basis of Difference Schemes JO - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences PY - 2010 SP - 154 EP - 161 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VSGTU_2010_1_a16/ LA - ru ID - VSGTU_2010_1_a16 ER -
%0 Journal Article %A M. A. Zausaeva %A V. E. Zoteev %T Definition of Parameters of 2D Dynamical Processes on the Basis of Difference Schemes %J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences %D 2010 %P 154-161 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/VSGTU_2010_1_a16/ %G ru %F VSGTU_2010_1_a16
M. A. Zausaeva; V. E. Zoteev. Definition of Parameters of 2D Dynamical Processes on the Basis of Difference Schemes. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 1 (2010), pp. 154-161. http://geodesic.mathdoc.fr/item/VSGTU_2010_1_a16/
[1] Zoteev V. E., Parametricheskaya identifikatsiya dissipativnykh mekhanicheskikh sistem na osnove raznostnykh uravnenii, ed. V. P. Radchenko, Mashinostroenie-1, M., 2009, 344 pp.
[2] Radchenko V. P., Goludin E. P., “Fenomenologicheskaya stokhasticheskaya model izotermicheskoi polzuchesti polivinilkhloridnogo plastikata”, Vestn. Sam. gos. tekhn. un-ta. Ser. Fiz.-mat. nauki, 2008, no. 1(16), 45–52 | DOI
[3] Radchenko V. P., Eremin Yu. A., Reologicheskoe deformirovanie i razrushenie materialov i elementov konstruktsii, Mashinostroenie-1, M., 2004, 265 pp.
[4] Kovalenko L. V., Popov N. N., Radchenko V. P., “Solution of the plane stochastic creep boundary value problem”, Journal of Applied Mathematics and Mechanics, 73:6, 727–733 | DOI | Zbl
[5] Popov N. N., Radchenko V. P., “Nonlinear stochastic creep problem for an inhomogeneous plane with the damage to the material taken into account”, Journal of Applied Mechanics and Technical Physics, 48:2 (2007), 265–270 | DOI | Zbl