Pattern Formation in Two-Component Reaction-Diffusion Systems in Fluctuate Environment
Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 1 (2010), pp. 143-153.

Voir la notice de l'article provenant de la source Math-Net.Ru

The influence of multiplicative fluctuations of parameters on pattern formation was researched. It was received the system which described interaction of undamped modes when soft mode instability were developed. It was shown that the fluctuations of parameters lead to changing of eigenvalues of unstable modes. The computational modeling of spatial structures evolution was conducted. Changing of fluctuating level of dynamic variables in process of dissipative pattern formation which conditioned by changing of external random field parameters were investigated.
Keywords: multiplicative fluctuations of parameters, pattern formation, Ginzburg–Landau equation, numerical modeling.
Mots-clés : unstable modes
@article{VSGTU_2010_1_a15,
     author = {S. E. Kurushina and Yu. V. Zhelnov and I. P. Zavershinskii and V. V. Maximov},
     title = {Pattern {Formation} in {Two-Component} {Reaction-Diffusion} {Systems} in {Fluctuate} {Environment}},
     journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
     pages = {143--153},
     publisher = {mathdoc},
     number = {1},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGTU_2010_1_a15/}
}
TY  - JOUR
AU  - S. E. Kurushina
AU  - Yu. V. Zhelnov
AU  - I. P. Zavershinskii
AU  - V. V. Maximov
TI  - Pattern Formation in Two-Component Reaction-Diffusion Systems in Fluctuate Environment
JO  - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
PY  - 2010
SP  - 143
EP  - 153
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VSGTU_2010_1_a15/
LA  - ru
ID  - VSGTU_2010_1_a15
ER  - 
%0 Journal Article
%A S. E. Kurushina
%A Yu. V. Zhelnov
%A I. P. Zavershinskii
%A V. V. Maximov
%T Pattern Formation in Two-Component Reaction-Diffusion Systems in Fluctuate Environment
%J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
%D 2010
%P 143-153
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VSGTU_2010_1_a15/
%G ru
%F VSGTU_2010_1_a15
S. E. Kurushina; Yu. V. Zhelnov; I. P. Zavershinskii; V. V. Maximov. Pattern Formation in Two-Component Reaction-Diffusion Systems in Fluctuate Environment. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 1 (2010), pp. 143-153. http://geodesic.mathdoc.fr/item/VSGTU_2010_1_a15/

[1] R. E. Amritkar, G. Rangarajan, “Spatially synchronous extinction of species under external forcing”, Phys. Rev. Lett., 96:25 (2006), 258102-1–258102-4 | DOI

[2] H. Malchow, F. M. Hilker, S. V. Petrovskii, “Noise and productivity dependence of spatiotemporal pattern formation in a prey-predator system”, Discrete and continuous dynamical systems. Series B, 4:3 (2004), 705–711 | DOI | MR | Zbl

[3] H. Malchow, F. M. Hilker, R. R. Sarkar, K. Brauer, “Spatiotemporal patterns in an excitable plankton system with lysogenic viral infection”, Mathematical and Computer Modelling, 42:9–10 (2005), 1035–1048 | DOI | MR | Zbl

[4] H. Malchow, F. M. Hilker, S. V. Petrovskii, K. Brauer, “Oscillations and waves in a virally infected plankton system. Part I: The lysogenic stage”, Ecological Complexity, 1:3 (2004), 211–223 | DOI

[5] A. S. Mikhailov, I. V. Uporov, “Kriticheskie yavleniya v sredakh s razmnozheniem, raspadom i diffuziei”, UFN, 144:1 (1984), 79–114 | DOI

[6] S. E. Kurushina, V. V. Maksimov, “Shumoindutsirovannye fazovye perekhody v protsessakh konkurentsii vo fluktuiruyuschikh sredakh”, Izvest. vuzov. Prikladnaya nelineinaya dinamika, 2010, no. 1, 4–16

[7] M. Scheffer, “Fish and nutrients interplay determines algal biomass: a minimal model”, OIKOS, 62:3 (1991), 271–282 | DOI

[8] R. A. Satnoianu, M. Menzinger, “Non-Turing stationary patterns in flow-distributed oscillators with general diffusion and flow rates”, Phys. Rev. E, 62:1 (2000), 113–119 | DOI | MR

[9] Yu. M. Svirizhev, Nelineinye volny, dissipativnye struktury i katastrofy v ekologii, Nauka, M., 1987 | MR

[10] H. Haken, Synergetik, Springer Verlag, Berlin, 1982 ; G. Khaken, Sinergetika, Mir, M., 1980 | MR | MR

[11] S. A. Akhmanov, Yu. E. Dyakov, A. S. Chirkin, Vvedenie v statisticheskuyu radiofiziku i optiku, Nauka, M., 1981 | MR

[12] V. I. Klyatskin, Stokhasticheskie uravneniya glazami fizika, Fizmatlit, M., 2001 | MR | Zbl

[13] S. E. Kurushina, “Analiticheskoe issledovanie i chislennoe modelirovanie kontrastnykh dissipativnykh struktur v pole fluktuatsii dinamicheskikh peremennykh”, Izvest. vuzov. Prikladnaya nelineinaya dinamika, 2009, no. 6, 125–138

[14] W. Horsthemke, R. Lefever, “Noise-Induced Transitions: Theory and Applications in Physics, Chemistry, and Biology”, Springer Series in Synergetics, Vol. 15, Springer, 1983 ; V. Khorstkhemke, R. Lefevr, Indutsirovannye shumom perekhody: teoriya i primenenie, Mir, M., 1987 | MR | MR

[15] V. S. Anischenko, Slozhnye kolebaniya v prostykh sistemakh: Mekhanizmy vozniknoveniya, struktura i svoistva dinamicheskogo khaosa v radiofizicheskikh sistemakh, Editorial URSS, M., 2009, 320 pp.