Non-Stationary Crystallization of Water with a Mushy Layer in the Turbulent and Non-Turbulent Boundary Conditions
Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 1 (2010), pp. 133-142.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the present work, we developed a mathematical model of the solidification processes from a cooling by an arbitrary law boundaries in the presence of mushy layer for non-isothermal solution (sea water) in the absence and presence of turbulence in the liquid at the boundary between the mushy layer and liquid phase of the system. The distribution of temperature, impurity concentration and the solid phase fraction in all regions of the process, and also the law of motion of the solid phase – mushy layer boundary were found. We consider two scenarios of the process: with no solid phase (which describes the solidification with some needle-shaped crystals) and with some (which describes the solidification of a blunt-end crystals) portion of the solid phase at the boundary of mushy layer and liquid. The results of the developed theory are in good agreement with observations.
Keywords: crystallization, sea ice, heat and mass transfer, mushy layer.
@article{VSGTU_2010_1_a14,
     author = {I. G. Nizovtseva and D. V. Alexandrov},
     title = {Non-Stationary {Crystallization} of {Water} with a {Mushy} {Layer} in the {Turbulent} and {Non-Turbulent}  {Boundary} {Conditions}},
     journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
     pages = {133--142},
     publisher = {mathdoc},
     number = {1},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGTU_2010_1_a14/}
}
TY  - JOUR
AU  - I. G. Nizovtseva
AU  - D. V. Alexandrov
TI  - Non-Stationary Crystallization of Water with a Mushy Layer in the Turbulent and Non-Turbulent  Boundary Conditions
JO  - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
PY  - 2010
SP  - 133
EP  - 142
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VSGTU_2010_1_a14/
LA  - ru
ID  - VSGTU_2010_1_a14
ER  - 
%0 Journal Article
%A I. G. Nizovtseva
%A D. V. Alexandrov
%T Non-Stationary Crystallization of Water with a Mushy Layer in the Turbulent and Non-Turbulent  Boundary Conditions
%J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
%D 2010
%P 133-142
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VSGTU_2010_1_a14/
%G ru
%F VSGTU_2010_1_a14
I. G. Nizovtseva; D. V. Alexandrov. Non-Stationary Crystallization of Water with a Mushy Layer in the Turbulent and Non-Turbulent  Boundary Conditions. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 1 (2010), pp. 133-142. http://geodesic.mathdoc.fr/item/VSGTU_2010_1_a14/

[1] L. I. Rubinshtein, Problema Stefana, Zvaigzne, Riga, 1967 | MR

[2] V. T. Borisov, Teoriya dvukhfaznoi zony metallicheskogo slitka, Metallurgiya, M., 1987

[3] R. N. Hills, D. E. Loper, P. H. Roberts The thermodynamically consistent model of a mushy zone, Q. J. Mech. Appl. Math., 36 (1983), 505–539 | DOI | Zbl

[4] The LeadEx Group, “The LeadEx experiment”, Eos Trans. AGU, 74:35 (1993), 393–397 | DOI

[5] J. S. Wettlaufer, M. G. Worster, H. E. Huppert, “Solidification of leads: Theory, experiment, and field observations”, J. Geophys. Res., 105:C1 (2000), 1123–1134 | DOI

[6] S. Martin, P. Kauffman, “The evolution of under-ice melt ponds, or double diffusion at the freezing point”, J. Fluid Mech., 64:3 (1974), 507–528 | DOI

[7] G. K. Batchelor, “Transport Properties of Two-Phase Materials with Random Structure”, Annu. Rev. Fluid Mech., 6 (1974), 227–255 | DOI | Zbl

[8] Yu. A. Buyevich, D. V. Alexandrov, Heat Transfer in Dispersions, Begell House, Inc., New York, 2005

[9] D. K. Perovich, A. J. Gow, “A quantitative description of sea ice inclusions”, J. Geophys. Res., 101:C8 (1996), 18,327–18,343 | DOI

[10] D. V. Alexandrov, A. P. Malygin, I. V. Alexandrova, “Solidification of leads: approximate solutions of non-linear problem”, Annals of Glaciology, 44:1 (2006), 118–122 | DOI | MR

[11] D. V. Alexandrov, A. P. Malygin, “Analytical description of seawater crystallization in ice fissures and their influence on heat exchange between the ocean and the atmosphere”, Doklady Earth Sciences, 411:2 (2006), 1407–1411 | DOI

[12] D. V. Alexandrov, D. L. Aseev, I. G. Nizovtseva, H.-N. Huang, D. Lee, “Nonlinear dynamics of directional solidification with a mushy layer. Analytic solutions of the problem”, Int. J. Heat Mass Transfer, 50:17–18 (2007), 3616–3623 | DOI | Zbl

[13] M. G. Worster, “Solidification of an alloy from a cooled boundary”, J. Fluid Mech., 167 (1986), 481–501 | DOI | Zbl

[14] Yu. A. Buyevich, D. V. Alexandrov, V. V. Mansurov, Macrokinetics of crystallization, Begell House, Inc., New York, 2001

[15] H. E. Huppert, M. G. Worster, “Dynamic solidification of a binary melt”, Nature, 314 (1985), 703–707 | DOI

[16] D. V. Alexandrov, A. P. Malygin, “Self-similar solidification of an alloy from a cooled boundary”, Int. J. Heat Mass Transfer, 49:3–4 (2006), 763–769 | DOI | Zbl

[17] M. G. McPhee, “A Time-Dependent Model for Turbulent Transfer in a Stratified Oceanic Boundary Layer”, J. Geophys. Res., 92:C7 (1987), 6977–6986 | DOI

[18] M. G. McPhee, “The upper Ocean”, The Geophysics of Sea Ice, NATO ASI series. Series B, Physics, 146, ed. N. Untersteiner, Plenum Press, New York, 1986, 133–141

[19] M. G. McPhee, G. A. Maykut, J. H. Morison, “Dynamics and Thermodynamics of the Ice/Upper Ocean System in the Marginal Ice Zone of the Greenland Sea”, J. Geophys. Res., 92:C7 (1987), 7017–7031 | DOI

[20] D. Notz, M. G. McPhee, M. G. Worster, G. A. Maykut, K. H. Schlünzen, H. Eicken, “Impact of underwater-ice evolution on Arctic summer sea ice”, J. Geophys. Res., 108:C7 (2003), 3223 | DOI

[21] P. R. Owen, W. R. Thomson, “Heat transfer across rough surfaces”, J. Fluid Mech., 15:3 (1963), 321–334 | DOI | Zbl

[22] A. M. Yaglom, B. A. Kader, “Heat and mass transfer between a rough wall and turbulent fluid flow at high Reynolds and Péclet numbers”, J. Fluid Mech., 62:3 (1974), 601–623 | DOI | Zbl