Cauchy Problem for the Nonlocal Equation Diffusion-Advection Radon in Fractal Media
Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 1 (2010), pp. 127-132.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this article, using the Green's function method solved the Cauchy problem for the equation of anomalous diffusion-advection of radon in a fractal medium, which is represented by a fractional derivative of the Caputo time fractional derivative and Riesz–Weil on the spatial coordinate.
Mots-clés : radon, superdiffusion, subddiffusion
Keywords: Cauchy problem, Green's function.
@article{VSGTU_2010_1_a13,
     author = {R. I. Parovik},
     title = {Cauchy {Problem} for the {Nonlocal} {Equation} {Diffusion-Advection} {Radon} in {Fractal} {Media}},
     journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
     pages = {127--132},
     publisher = {mathdoc},
     number = {1},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGTU_2010_1_a13/}
}
TY  - JOUR
AU  - R. I. Parovik
TI  - Cauchy Problem for the Nonlocal Equation Diffusion-Advection Radon in Fractal Media
JO  - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
PY  - 2010
SP  - 127
EP  - 132
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VSGTU_2010_1_a13/
LA  - ru
ID  - VSGTU_2010_1_a13
ER  - 
%0 Journal Article
%A R. I. Parovik
%T Cauchy Problem for the Nonlocal Equation Diffusion-Advection Radon in Fractal Media
%J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
%D 2010
%P 127-132
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VSGTU_2010_1_a13/
%G ru
%F VSGTU_2010_1_a13
R. I. Parovik. Cauchy Problem for the Nonlocal Equation Diffusion-Advection Radon in Fractal Media. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 1 (2010), pp. 127-132. http://geodesic.mathdoc.fr/item/VSGTU_2010_1_a13/

[1] C. Yu. Bedanokova, Matematicheskoe modelirovanie vodnogo i solevogo rezhimov v pochvakh s fraktalnoi organizatsiei, Avtoref. diss. ... kand. fiz.-mat. nauk: 05.13.18, Yuzh. fed. un-t, Taganrog, 2007, 16 pp.

[2] R. P. Meilanov, M. R. Shabanova, “Uravnenie teploprovodnosti dlya sred s fraktalnoi strukturoi”, Sovremennye naukoëmkie tekhnologii, 2007, no. 8, 84–85

[3] L. I. Serbina, Nelokalnye matematicheskie modeli perenosa v vodonosnykh sistemakh, Nauka, M., 2006

[4] A. A. Lukk, A. V. Descherevskii, A. Ya. Sidorin, I. A. Sidorin, Variatsii geofizicheskikh polei kak proyavleniya determinirovannogo khaosa vo fraktalnoi srede, OIFZ RAN, M., 1996

[5] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, “Theory and Applications of Fractional Differential Equations”, North-Holland Mathematics Studies, 204, ed. J. van Mill, Elsevier, Amsterdam, 2006 | MR | Zbl

[6] V. V. Nakhushev, Drobnoe ischislenie i ego primenenie, Fizmatlit, M., 2003 | Zbl

[7] V. V. Uchaikin, Metod drobnykh proizvodnykh, Artishok, Ulyanovsk, 2008

[8] V. P. Rudakov, “Monitoring napryazhenno-deformirovannogo sostoyaniya porod seismoaktivnogo regiona emanatsionnym metodom”, Geokhimiya, 1986, no. 9, 1337–1342

[9] P. P. Firstov, V. P. Rudakov, “Registratsiya podpochvennogo radona v 1997–2000 gg. na Petropavlovsk"– Kamchatskom geodinamicheskom poligone”, Vulkanologiya i seismologiya, 2002, no. 6, 1–6

[10] G. F. Novikov, Yu. N. Kapkov, Radioaktivnye metody razvedki, Nedra, L., 1965

[11] A. V. Glushak, “O svyazi reshenii abstraktnykh differentsialnykh uravnenii, soderzhaschikh drobnye proizvodnye”, Vestn. Voronezh. gos. un-ta. Ser. Fiz. i matem., 2002, no. 2, 56–58 | Zbl