A Method of Solving Boundary Value Problem of Residual Stresses Relaxation in the Hardened Layer of Cylindrical Specimen during Vibrocreep
Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 1 (2010), pp. 111-120.

Voir la notice de l'article provenant de la source Math-Net.Ru

Presents the method of calculating the relaxation of residual stresses under vibrocreep. Based on the ideas of decomposition and aggregation of the calculation of the kinetics of relaxation of residual stresses in the surface layer is reduced to gluing solutions of two boundary value problems. In the process of solving the first boundary value problem defined by the stress-strain state of a cylindrical specimen during creep without taking into account the surface hardened layer. The second boundary value problem is investigated relaxation of residual stresses in surface hardening layer, deformable in the “hard” loading at given values of the strain tensor components, which are determined by solving the first boundary value problem. It is shown that the imposition of vibroloads landlines load significantly accelerates the process of relaxation of residual stresses. Results of model calculations are presented.
Keywords: vibropcreep, parameter identification, residual stresses, residual stresses relaxation.
@article{VSGTU_2010_1_a11,
     author = {M. N. Saushkin and E. V. Dubovova},
     title = {A {Method} of {Solving} {Boundary} {Value} {Problem} of {Residual} {Stresses} {Relaxation}  in the {Hardened} {Layer} of {Cylindrical} {Specimen} during {Vibrocreep}},
     journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
     pages = {111--120},
     publisher = {mathdoc},
     number = {1},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGTU_2010_1_a11/}
}
TY  - JOUR
AU  - M. N. Saushkin
AU  - E. V. Dubovova
TI  - A Method of Solving Boundary Value Problem of Residual Stresses Relaxation  in the Hardened Layer of Cylindrical Specimen during Vibrocreep
JO  - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
PY  - 2010
SP  - 111
EP  - 120
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VSGTU_2010_1_a11/
LA  - ru
ID  - VSGTU_2010_1_a11
ER  - 
%0 Journal Article
%A M. N. Saushkin
%A E. V. Dubovova
%T A Method of Solving Boundary Value Problem of Residual Stresses Relaxation  in the Hardened Layer of Cylindrical Specimen during Vibrocreep
%J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
%D 2010
%P 111-120
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VSGTU_2010_1_a11/
%G ru
%F VSGTU_2010_1_a11
M. N. Saushkin; E. V. Dubovova. A Method of Solving Boundary Value Problem of Residual Stresses Relaxation  in the Hardened Layer of Cylindrical Specimen during Vibrocreep. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 1 (2010), pp. 111-120. http://geodesic.mathdoc.fr/item/VSGTU_2010_1_a11/

[1] V. P. Radchenko, M. N. Saushkin, Polzuchest i relaksatsiya ostatochnykh napryazhenii v uprochnënnykh konstruktsiyakh, Mashinostroenie-1, M., 2005

[2] V. P. Radchenko, M. N. Saushkin, “Matematicheskie modeli vosstanovleniya i relaksatsii ostatochnykh napryazhenii v poverkhnostno uprochnënnom sloe tsilindricheskikh elementov konstruktsii pri polzuchesti”, Izv. vuzov. Mashinostroenie, 2004, no. 11, 3–17

[3] V. P. Radchenko, M. N. Saushkin, “Raschët relaksatsii ostatochnykh napryazhenii v poverkhnostno uprochnënnom sloe tsilindricheskogo izdeliya v usloviyakh polzuchesti”, Vestn. Sam. gos. tekhn. un-ta. Ser. Fiz.-mat. nauki, 2001, no. 12, 61–73 | DOI

[4] V. P. Radchenko, E. K. Kichaev A. V. Simonov, “Energetic version of the model of rheological deformation and destruction of metal under a joint action of static and cyclic loads”, J. Appl. Mech. Tech. Phys., 41:3 (2000), 531–537 | DOI | Zbl

[5] V. P. Radchenko, P. E. Kichaev, V. S. Gagarinskii, “Uravneniya sostoyaniya i kriterii razrusheniya materialov v usloviyakh tsiklicheskoi polzuchesti”, Izv. vuzov. Mashinostroenie, 2006, no. 5, 9–18

[6] V. P. Radchenko, Yu. A. Erëmin, Reologicheskoe deformirovanie i razrushenie materialov i elementov konstruktsii., Mashinostroenie-1, M., 2004, 256 pp.

[7] M. N. Saushkin, E. V. Dubovova, “Identifikatsiya parametrov, kontroliruyuschikh protsessy razuprochneniya materiala v usloviyakh polzuchesti i vibropolzuchesti”, Trudy Tretei Vserossiiskoi nauchnoi konferentsii (29–31 maya 2008 g.). Chast 1, Matematicheskie modeli mekhaniki, prochnosti i nadëzhnosti elementov konstruktsii, Matem. modelirovanie i kraev. zadachi, SamGTU, Samara, 2008, 266–272

[8] V. P. Radchenko, A. V. Simonov, “Razrabotka avtomatizirovannoi sistemy postroeniya modelei neuprugogo deformirovaniya metallov na osnove metodov neparametricheskogo vyravnivaniya eksperimentalnykh dannykh”, Vestn. Sam. gos. tekhn. un-ta. Ser. Fiz.-mat. nauki, 7 (1999), 51–62 | DOI