Problem with Conjugation on the Characteristic Plane for One 3D Space Analogue of Hyperbolic Type Equation
Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 1 (2010), pp. 16-23.

Voir la notice de l'article provenant de la source Math-Net.Ru

The value boundary problem with conjugation together on the characteristic plane in the special class, entered by authors, is solved for the one 3D space analogue of the hyperbolic type equation in the area, which parts of border are the planes of singularity of the given equation factors.
Keywords: integral equations, boundary value problems, hyperbolic type equations.
@article{VSGTU_2010_1_a1,
     author = {V. M. Dolgopolov and I. N. Rodionova},
     title = {Problem with {Conjugation} on the {Characteristic} {Plane} for {One} {3D} {Space} {Analogue} of {Hyperbolic} {Type} {Equation}},
     journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
     pages = {16--23},
     publisher = {mathdoc},
     number = {1},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGTU_2010_1_a1/}
}
TY  - JOUR
AU  - V. M. Dolgopolov
AU  - I. N. Rodionova
TI  - Problem with Conjugation on the Characteristic Plane for One 3D Space Analogue of Hyperbolic Type Equation
JO  - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
PY  - 2010
SP  - 16
EP  - 23
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VSGTU_2010_1_a1/
LA  - ru
ID  - VSGTU_2010_1_a1
ER  - 
%0 Journal Article
%A V. M. Dolgopolov
%A I. N. Rodionova
%T Problem with Conjugation on the Characteristic Plane for One 3D Space Analogue of Hyperbolic Type Equation
%J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
%D 2010
%P 16-23
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VSGTU_2010_1_a1/
%G ru
%F VSGTU_2010_1_a1
V. M. Dolgopolov; I. N. Rodionova. Problem with Conjugation on the Characteristic Plane for One 3D Space Analogue of Hyperbolic Type Equation. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 1 (2010), pp. 16-23. http://geodesic.mathdoc.fr/item/VSGTU_2010_1_a1/

[1] V. M. Dolgopolov, M. V. Dolgopolov, I. N. Rodionova, “Construction of special classes of solutions for some differential equations of hyperbolic type”, Dokl. Math., 80:3 (2009), 860–866 | DOI | Zbl

[2] V. M. Dolgopolov, I. N. Rodionova, “Vidoizmenennaya zadacha Koshi dlya odnogo giperbolicheskogo uravneniya tretego poryadka v trëkhmernom prostranstve”, Vestn. Sam. gos. tekhn. un-ta. Ser. Fiz.-mat. nauki, 2009, no. 1(18), 41–46 | DOI

[3] V. M. Dolgopolov, M. V. Dolgopolov, I. N. Rodionova, “Dve zadachi dlya giperbolicheskogo uravneniya v trëkhmernom prostranstve”, Vestn. Sam. gos. un-ta. Estestvennonauchnaya ser., 2008, no. 8/1(67), 95–102

[4] V. F. Volkodavov, I. N. Rodionova, S. V. Bushkov, “A 3D analog of problem $M$ for a third-order hyperbolic equation”, Differ. Equ., 40:12 (2004), 1781–1784 | DOI | MR | Zbl

[5] S. G. Samko, A. A. Kilbas, O. I. Marichev, Integraly i proizvodnye drobnogo poryadka i nekotorye ikh prilozheniya, Nauka i tekhnika, Mn., 1987 | MR | Zbl