Hoff Equation Stability on a Graph
Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 1 (2010), pp. 6-15

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the stability of stationary solutions of the Hoff equation on a graph, which is a model design of I-beams. The basic approach second Lyapunov method, modified according to our situation. In the end explains the technical meaning of the parameter $\lambda_0$.
Mots-clés : Hoff equations
Keywords: stability, Lyapunov function, graph.
@article{VSGTU_2010_1_a0,
     author = {G. A. Sviridyuk and S. A. Zagrebina and P. O. Pivovarova},
     title = {Hoff {Equation} {Stability} on a {Graph}},
     journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
     pages = {6--15},
     publisher = {mathdoc},
     number = {1},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGTU_2010_1_a0/}
}
TY  - JOUR
AU  - G. A. Sviridyuk
AU  - S. A. Zagrebina
AU  - P. O. Pivovarova
TI  - Hoff Equation Stability on a Graph
JO  - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
PY  - 2010
SP  - 6
EP  - 15
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VSGTU_2010_1_a0/
LA  - ru
ID  - VSGTU_2010_1_a0
ER  - 
%0 Journal Article
%A G. A. Sviridyuk
%A S. A. Zagrebina
%A P. O. Pivovarova
%T Hoff Equation Stability on a Graph
%J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
%D 2010
%P 6-15
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VSGTU_2010_1_a0/
%G ru
%F VSGTU_2010_1_a0
G. A. Sviridyuk; S. A. Zagrebina; P. O. Pivovarova. Hoff Equation Stability on a Graph. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 1 (2010), pp. 6-15. http://geodesic.mathdoc.fr/item/VSGTU_2010_1_a0/