Hoff Equation Stability on a Graph
Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 1 (2010), pp. 6-15.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the stability of stationary solutions of the Hoff equation on a graph, which is a model design of I-beams. The basic approach second Lyapunov method, modified according to our situation. In the end explains the technical meaning of the parameter $\lambda_0$.
Mots-clés : Hoff equations
Keywords: stability, Lyapunov function, graph.
@article{VSGTU_2010_1_a0,
     author = {G. A. Sviridyuk and S. A. Zagrebina and P. O. Pivovarova},
     title = {Hoff {Equation} {Stability} on a {Graph}},
     journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
     pages = {6--15},
     publisher = {mathdoc},
     number = {1},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGTU_2010_1_a0/}
}
TY  - JOUR
AU  - G. A. Sviridyuk
AU  - S. A. Zagrebina
AU  - P. O. Pivovarova
TI  - Hoff Equation Stability on a Graph
JO  - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
PY  - 2010
SP  - 6
EP  - 15
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VSGTU_2010_1_a0/
LA  - ru
ID  - VSGTU_2010_1_a0
ER  - 
%0 Journal Article
%A G. A. Sviridyuk
%A S. A. Zagrebina
%A P. O. Pivovarova
%T Hoff Equation Stability on a Graph
%J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
%D 2010
%P 6-15
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VSGTU_2010_1_a0/
%G ru
%F VSGTU_2010_1_a0
G. A. Sviridyuk; S. A. Zagrebina; P. O. Pivovarova. Hoff Equation Stability on a Graph. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 1 (2010), pp. 6-15. http://geodesic.mathdoc.fr/item/VSGTU_2010_1_a0/

[1] N. J. Hoff, “Creep buckling”, Aeron. Quarterly 7, 1956, no. 1, 1–20

[2] N. A. Sidorov, Obschie voprosy regulyarizatsii v zadachakh teorii vetvleniya, Irkut. gos. un-t, Irkutsk, 1982, 312 pp. | MR | Zbl

[3] N. A. Sidorov, O. A. Romanova, “Application of branching theory in the solution of differential equations with degeneration”, Differ. Equations, 19:9 (1983), 1139–1148 | MR | Zbl

[4] N. A. Sidorov, M. V. Falaleev, “Obobschënnye resheniya differentsialnykh uravnenii s fredgolmovym operatorom pri proizvodnoi”, Differents. uravneniya, 23:4 (1987), 726–728

[5] G. A. Sviridyuk, “Quasistationary Trajectories of Semilinear Dynamical Equations of Sobolev Type”, Russian Academy of Sciences. Izvestiya Mathematics, 42:3 (1994), 601–614 | DOI | MR | Zbl

[6] G. A. Sviridyuk, V. O. Kazak, “The Phase Space of an Initial-Boundary Value Problem for the Hoff Equation”, Mathematical Notes, 71:1–2 (2002), 262–266 | DOI | DOI | MR | Zbl

[7] G. A. Sviridyuk, I. K. Trineeva, “A Whitney fold in the phase space of the Hoff equation”, Russian Math. (Iz. VUZ), 49:10 (2005), 49–55 | MR

[8] Yu. V. Pokornyi, O. M. Penkin, V. L. Pryadiev i dr., Differentsialnye uravneniya na geometricheskikh grafakh, Fizmatlit, M., 2004 | Zbl

[9] G. V. Demidenko, S. V. Uspenskii, Partial differential equations and systems not solvable with respect to the highest–order derivative, Marcel Dekker, Inc., New York; Basel; Hong Kong, 2003, 490 pp. | MR | Zbl

[10] G. A. Sviridyuk, “Uravneniya sobolevskogo tipa na grafakh”, Neklassicheskie uravneniya matematicheskoi fiziki, Sb. nauch. rabot, IM SO RAN, Novosibirsk, 2002, 221–225 | Zbl

[11] G. A. Sviridyuk, V. V. Shemetova, “Uravneniya Khoffa na grafakh”, Differents. uravneniya, Lecture Notes in Mathematics, 840, 42, no. 1, Springer-Verlag, Berlin; New York, 2006, 126–131 ; Khenri D., Geometricheskaya teoriya polulineinykh parabolicheskikh uravnenii, Mir, M., 1985 | MR | MR | Zbl

[12] G. A. Sviridyuk, V. E. Fedorov, “Linear Sobolev Type Equations and Degenerate Semigroups of Operators”, Inverse and Ill-posed Problems Series, VSP, Utrecht; Boston; Köln; Tokyo, 2003 | MR | Zbl

[13] S. Lang, Introduction to Differentiable Manifolds, Interscience, New York, 1962 ; S. Leng, Vvedenie v teoriyu differentsiruemykh mnogoobrazii, M., Mir, 1967 | MR

[14] O. G. Kitaeva, Issledovanie ustoichivykh i neustoichivykh invariantnykh mnogoobrazii polulineinykh uravnenii sobolevskogo tipa, Dis. ... kand. fiz.-mat. nauk: 01.01.02: zaschischena 09.06.06: utv. 10.11.06 / Kitaeva Olga Gennadevna, Magnitogorsk, 2006, 111 pp.

[15] G. A. Sviridyuk, “Manifolds of solutions of a class of evolution and dynamic equations”, Soviet Math. Dokl., 39:1 (1989), 78–81 | MR | MR | Zbl

[16] D. V. Anosov, “Dinamicheskaya sistema”, Matematicheskaya entsiklopediya, T. 2 D–Koo, M., 1979, 143–149

[17] J. E. Marsden, M. McCracken, “The Hopf Bifurcation and Its Applications”, Applied Mathematical Sciences, 19, Springer-Verlag, New York, 1976 ; Marsden Dzh., Mak-Kraken M., Bifurkatsiya rozhdeniya tsikla i ee prilozheniya, Mir, M., 1980 | DOI | MR | Zbl