Application of methods of the theory of perturbations in flat problem of equally-stressed reinforcing of metal-composite plates at steady creep
Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 2 (2009), pp. 53-71.

Voir la notice de l'article provenant de la source Math-Net.Ru

The problem of equally-stressed reinforcings of the plates loaded in their plane and working in condition of steady creep is solved by methods of the theory of perturbations. The possibility of existence of several alternative solutions of the problem under consideration is demonstrated which can be selected reliably, using the algorithm developed. Explicit projects of equally-stressed reinforcings of a doubly-connected plate are constructed at different types of its load.
Keywords: plates, steady creep, rational projection, equal-stress reinforcing, small parameter, perturbations theory.
@article{VSGTU_2009_2_a6,
     author = {A. P. Yankovskii},
     title = {Application of methods of the theory of perturbations in flat problem of equally-stressed reinforcing of metal-composite plates at steady creep},
     journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
     pages = {53--71},
     publisher = {mathdoc},
     number = {2},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGTU_2009_2_a6/}
}
TY  - JOUR
AU  - A. P. Yankovskii
TI  - Application of methods of the theory of perturbations in flat problem of equally-stressed reinforcing of metal-composite plates at steady creep
JO  - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
PY  - 2009
SP  - 53
EP  - 71
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VSGTU_2009_2_a6/
LA  - ru
ID  - VSGTU_2009_2_a6
ER  - 
%0 Journal Article
%A A. P. Yankovskii
%T Application of methods of the theory of perturbations in flat problem of equally-stressed reinforcing of metal-composite plates at steady creep
%J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
%D 2009
%P 53-71
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VSGTU_2009_2_a6/
%G ru
%F VSGTU_2009_2_a6
A. P. Yankovskii. Application of methods of the theory of perturbations in flat problem of equally-stressed reinforcing of metal-composite plates at steady creep. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 2 (2009), pp. 53-71. http://geodesic.mathdoc.fr/item/VSGTU_2009_2_a6/

[1] Kachanov L. M., Teoriya polzuchesti, Fizmatgiz, M., 1960, 456 pp.

[2] Nemirovskii Yu. V., Yankovskii A. P., “Ravnonapryazhennoe armirovanie metallokompozitnykh plastin voloknami postoyannogo poperechnogo secheniya v usloviyakh ustanovivsheisya polzuchesti”, Mekhanika kompozitnykh materialov, 44:1 (2008), 11–34

[3] Samarskii A. A., Teoriya raznostnykh skhem, Nauka, M., 1989, 616 pp. | MR

[4] Naife A., Vvedenie v metody vozmuschenii, Mir, M., 1984, 536 pp. | MR

[5] Pisarenko G. S., Mozharovskii N. S., Uravneniya i kraevye zadachi teorii plastichnosti i polzuchesti, Spravochnoe posobie, Naukova dumka, Kiev, 1981, 496 pp. | MR | Zbl

[6] D. M. Karpinos (red.), Kompozitsionnye materialy, Spravochnik, Naukova dumka, Kiev, 1985, 592 pp.

[7] Karpinos D. M., Nevgod V. A., Tuchinskii L. I. i dr., “Polzuchest i dlitelnaya prochnost volframovykh provolok”, Probl. prochnosti, 1972, no. 1, 70–73

[8] Sosnin O. V., “O polzuchesti slabo uprochnyayuschikhsya materialov pri nestatsionarnykh temperaturno-silovykh rezhimakh”, Probl. prochnosti, 1972, no. 1, 74–77

[9] Dzhuraev T. D., Kraevye zadachi dlya uravnenii smeshannogo i smeshanno-sostavnogo tipov, Fan, Tashkent, 1979, 238 pp. | MR | Zbl

[10] Novozhilov V. V., Chernykh K. F., Mikhailovskii E. I., Lineinaya teoriya tonkikh obolochek, Politekhnika, L., 1991, 656 pp. | MR

[11] Kamke E., Spravochnik po differentsialnym uravneniyam v chastnykh proizvodnykh pervogo poryadka, Nauka, M., 1966, 260 pp. | Zbl

[12] Petrovskii I. G., Lektsii ob uravneniyakh s chastnymi proizvodnymi, Fizmatgiz, M., 1961, 400 pp. | MR

[13] Rozhdestvenskii B. L., Yanenko N. N., Sistemy kvazilineinykh uravnenii, Nauka, M., 1969, 592 pp.

[14] Bitsadze A. V., Kraevye zadachi dlya ellipticheskikh uravnenii vtorogo poryadka, Nauka, M., 1966, 204 pp. | Zbl

[15] Belyaev N. M., Ryadno A. A., Metody teorii teploprovodnosti, Ucheb. posobie dlya vuzov. V 2-kh chastyakh. Ch. 1, Vyssh. shkola, M., 1982, 327 pp.

[16] Belyaev N. M., Ryadno A. A., Metody teorii teploprovodnosti, Ucheb. posobie dlya vuzov. V 2-kh chastyakh. Ch. 2, Vyssh. shkola, M., 1982, 304 pp.

[17] Demidov S. P., Teoriya uprugosti, Vyssh. shkola, M., 1979, 432 pp.

[18] Nemirovskii Yu. V., Reznikov B. S., Prochnost elementov konstruktsii iz kompozitnykh materialov, Nauka, Novosibirsk, 1986, 168 pp.

[19] Nemirovskii Yu. V., Yankovskii A. P., “Termouprugoplasticheskii izgib slozhno armirovannykh plastin”, Mekhanika kompozitnykh materialov, 41:6 (2005), 715–742