Application of the regularization method to differential equations of comets' motion
Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 2 (2009), pp. 288-292.

Voir la notice de l'article provenant de la source Math-Net.Ru

Regularization method for differential equation of comets' motion is used. Numerical integration of the equation of motion of 10 short-period comets during the period of 1800 to 2204 with the use of osculating elements of the large planets is done. The high efficiency of this method for short-period comets study is demonstrated. efficiency of this method for short-period comets is shown.
Keywords: numerical integration, differential equation of motion, method of the osculation elements.
@article{VSGTU_2009_2_a39,
     author = {A. F. Zausaev and L. A. Solov'ev},
     title = {Application of the regularization method to differential equations of comets' motion},
     journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
     pages = {288--292},
     publisher = {mathdoc},
     number = {2},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGTU_2009_2_a39/}
}
TY  - JOUR
AU  - A. F. Zausaev
AU  - L. A. Solov'ev
TI  - Application of the regularization method to differential equations of comets' motion
JO  - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
PY  - 2009
SP  - 288
EP  - 292
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VSGTU_2009_2_a39/
LA  - ru
ID  - VSGTU_2009_2_a39
ER  - 
%0 Journal Article
%A A. F. Zausaev
%A L. A. Solov'ev
%T Application of the regularization method to differential equations of comets' motion
%J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
%D 2009
%P 288-292
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VSGTU_2009_2_a39/
%G ru
%F VSGTU_2009_2_a39
A. F. Zausaev; L. A. Solov'ev. Application of the regularization method to differential equations of comets' motion. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 2 (2009), pp. 288-292. http://geodesic.mathdoc.fr/item/VSGTU_2009_2_a39/

[1] Brumberg V. A., Relyativistskaya nebesnaya mekhanika, Nauka, M., 1972, 382 pp. | MR | Zbl

[2] Shtifel E., Sheifele G., Lineinaya i regulyarnaya nebesnaya mekhanika, Nauka, M., 1975, 304 pp. | MR

[3] Zausaev A. F., Zausaev D. A., “Chislennoe integrirovanie uravnenii dvizheniya malykh tel Solnechnoi sistemy s ispolzovaniem oskuliruyuschikh elementov bolshikh planet”, Differentsialnye uravneniya i kraevye zadachi, Trudy Shestoi Vserossiiskoi nauchnoi konferentsii s mezhdunarodnym uchastiem, Chast 3 (1–4 iyunya 2009 g.), Matem. modelirovanie i kraev. zadachi, SamGTU, Samara, 2009, 125–130

[4] Newhall X. X., Standish E. M., Williams J. G., “DE 102 – A numerically integrated ephemeris of the moon and planets spanning forty-four centuries”, Astron. Astrophys., 125:1 (1983), 150–167 | Zbl

[5] Zausaev A. F., Zausaev A. A., Katalog orbitalnoi evolyutsii korotkoperiodicheskikh komet s 1800 po 2204 gg., Mashinostroenie-1, M., 2007, 410 pp.