Copper cryogenic deformation
Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 2 (2009), pp. 280-283.

Voir la notice de l'article provenant de la source Math-Net.Ru

The effect of high pressure torsion cryogenic deformation on the structure of copper was studied by electron back-scattered diffraction analysis. The average grain size was brought down to 0.2 $\mu$m. The analysis of the developed texture and misorientation distribution have demonstrated that the plastic flow arose mainly from the usual $\{111\}\langle110\rangle$ slip whereas thecontribution of mechanical twinning was very limited. The grain structure evolution was shown to be mainly governed by the geometrical effect of the imposed strain.
Keywords: severe plastic deformation, cryogenic deformation, copper, texture.
Mots-clés : structure
@article{VSGTU_2009_2_a37,
     author = {T. N. Kon'kova and S. Yu. Mironov and A. V. Korznikov},
     title = {Copper cryogenic deformation},
     journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
     pages = {280--283},
     publisher = {mathdoc},
     number = {2},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGTU_2009_2_a37/}
}
TY  - JOUR
AU  - T. N. Kon'kova
AU  - S. Yu. Mironov
AU  - A. V. Korznikov
TI  - Copper cryogenic deformation
JO  - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
PY  - 2009
SP  - 280
EP  - 283
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VSGTU_2009_2_a37/
LA  - ru
ID  - VSGTU_2009_2_a37
ER  - 
%0 Journal Article
%A T. N. Kon'kova
%A S. Yu. Mironov
%A A. V. Korznikov
%T Copper cryogenic deformation
%J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
%D 2009
%P 280-283
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VSGTU_2009_2_a37/
%G ru
%F VSGTU_2009_2_a37
T. N. Kon'kova; S. Yu. Mironov; A. V. Korznikov. Copper cryogenic deformation. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 2 (2009), pp. 280-283. http://geodesic.mathdoc.fr/item/VSGTU_2009_2_a37/

[1] Gleiter H., “Nanocrystalline Materials”, Prog. Mater. Sci., 33:4 (1989), 223–315 | DOI

[2] Valiev R. Z, Aleksandrov I. V., Nanostrukturnye materialy, poluchennye intensivnoi plasticheskoi deformatsiei, Logos, M., 2000, 272 pp.

[3] Tyumentsev A. N., Ditenberg I. A., Pinzhin Yu. P., Korotaev A. D., Valiev R. Z., “Osobennosti mikrostruktury i mekhanizmy formirovaniya submikrokristallicheskoi medi, poluchennoi metodami intensivnoi deformatsii”, Fizika metallov i metallovedenie, 96:4 (2003), 33–43

[4] Huang Y., Prangnell P., “The effect of cryogenic temperature and change in deformation mode on the limiting grain size in a severely deformed dilute aluminium alloy”, Acta Materialia, 56:7 (2008), 1619–1632 | DOI

[5] Humphreys F., “Characterisation of fine-scale microstructures by electron backscatter diffraction (EBSD)”, Scripta Materialia, 51:8 (2004), 771–776 | DOI