The numerical integration of the equation of small bodies of the Solar system with use of osculating elements
Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 2 (2009), pp. 231-239.

Voir la notice de l'article provenant de la source Math-Net.Ru

The numerical integration of the equations of the Solar system small bodies motion is carried out with application of osculating elements of the larger planets. This method proves to be highly efficient for small bodies that do not approach close to the Earth.
Keywords: numerical integration, differential equation of motion, method of the osculation elements.
@article{VSGTU_2009_2_a26,
     author = {A. F. Zausaev and D. A. Zausaev},
     title = {The numerical integration of the equation of small bodies of the {Solar} system with use of osculating elements},
     journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
     pages = {231--239},
     publisher = {mathdoc},
     number = {2},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGTU_2009_2_a26/}
}
TY  - JOUR
AU  - A. F. Zausaev
AU  - D. A. Zausaev
TI  - The numerical integration of the equation of small bodies of the Solar system with use of osculating elements
JO  - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
PY  - 2009
SP  - 231
EP  - 239
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VSGTU_2009_2_a26/
LA  - ru
ID  - VSGTU_2009_2_a26
ER  - 
%0 Journal Article
%A A. F. Zausaev
%A D. A. Zausaev
%T The numerical integration of the equation of small bodies of the Solar system with use of osculating elements
%J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
%D 2009
%P 231-239
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VSGTU_2009_2_a26/
%G ru
%F VSGTU_2009_2_a26
A. F. Zausaev; D. A. Zausaev. The numerical integration of the equation of small bodies of the Solar system with use of osculating elements. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 2 (2009), pp. 231-239. http://geodesic.mathdoc.fr/item/VSGTU_2009_2_a26/

[1] Zausaev A. F., Zausaev D. A., “Chislennoe integrirovanie uravnenii dvizheniya malykh tel Solnechnoi sistemy s ispolzovaniem oskuliruyuschikh elementov bolshikh planet”, Differentsialnye uravneniya i kraevye zadachi, Trudy Shestoi Vserossiiskoi nauchnoi konferentsii s mezhdunarodnym uchastiem, Chast 3 (1–4 iyunya 2009 g.), Matem. modelirovanie i kraev. zadachi, SamGTU, Samara, 2009, 125–130

[2] Newhall X. X., Standish E. M., Williams J. G., “DE 102 – A numerically integrated ephemeris of the moon and planets spanning forty-four centuries”, Astron. Astrophys., 125:1 (1983), 150–167 | Zbl

[3] Zausaev A. F., Zausaev A. A., Matematicheskioe modelirovanie orbitalnoi evolyutsii malykh tel Solnechnoi sistemy, Mashinostroenie-1, M., 2008, 250 pp.

[4] Brumberg V. A., Relyativistskaya nebesnaya mekhanika, Nauka, M., 1972, 382 pp. | MR | Zbl

[5] Zausaev A. F., Abramov V. V., Denisov S. S., Katalog orbitalnoi evolyutsii asteroidov, sblizhayuschikhsya s Zemlei s 1800 po 2204 gg., Mashinostroenie-1, M., 2007, 608 pp.

[6] Zausaev A. F., Zausaev A. A., Katalog orbitalnoi evolyutsii korotkoperiodicheskikh komet s 1800 po 2204 gg., Mashinostroenie-1, M., 2007, 410 pp.