Modeling of cavities formation in electrolytic particles with pentagonal symmetry
Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 2 (2009), pp. 209-216.

Voir la notice de l'article provenant de la source Math-Net.Ru

Computer modelling of cavities formation in particles with pentagonal symmetry is implemented. The peculiarity of the model is the calculation of a non-homogeneous diffusion coefficient in the field examined. Comparison with analogs demonstrates the increase of accuracy and decrease of calculation time.
Keywords: computer modeling, cavities formation, defects relaxation, cell automatic machines.
@article{VSGTU_2009_2_a23,
     author = {N. I. Limanova and E. A. Mamzin and E. A. Talalova and A. A. Vikarchuk},
     title = {Modeling of cavities formation in electrolytic particles with pentagonal symmetry},
     journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
     pages = {209--216},
     publisher = {mathdoc},
     number = {2},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGTU_2009_2_a23/}
}
TY  - JOUR
AU  - N. I. Limanova
AU  - E. A. Mamzin
AU  - E. A. Talalova
AU  - A. A. Vikarchuk
TI  - Modeling of cavities formation in electrolytic particles with pentagonal symmetry
JO  - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
PY  - 2009
SP  - 209
EP  - 216
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VSGTU_2009_2_a23/
LA  - ru
ID  - VSGTU_2009_2_a23
ER  - 
%0 Journal Article
%A N. I. Limanova
%A E. A. Mamzin
%A E. A. Talalova
%A A. A. Vikarchuk
%T Modeling of cavities formation in electrolytic particles with pentagonal symmetry
%J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
%D 2009
%P 209-216
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VSGTU_2009_2_a23/
%G ru
%F VSGTU_2009_2_a23
N. I. Limanova; E. A. Mamzin; E. A. Talalova; A. A. Vikarchuk. Modeling of cavities formation in electrolytic particles with pentagonal symmetry. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 2 (2009), pp. 209-216. http://geodesic.mathdoc.fr/item/VSGTU_2009_2_a23/

[1] Vikarchuk A. A., Volenko A. P. i dr., “Klasterno-disklinatsionnyi mekhanizm obrazovaniya pentagonalnykh kristallov, dendritov i sferolitov pri elektrokristallizatsii medi na indifferentnykh podlozhkakh”, Vestn. Tambov. un-ta, 8:4 (2003), 531–534

[2] Vikarchuk A. A., Volenko A. P. i dr., “Disklinatsionnaya model formirovaniya kristallov s pyaternoi simmetriei pri elektroosazhdenii GTsK-metallov”, Mashinostroitel, 2003, no. 7, 30–34

[3] Vikarchuk A. A., Volenko A. P. i dr., “O disklinatsionnoi prirode pentagonalnykh kristallov, formiruyuschikhsya pri elektrokristallizatsii medi”, Elektrokhimiya, 40:2 (2004), 207–214

[4] Vikarchuk A. A., Yasnikov I. S., Strukturoobrazovanie v nanochastitsakh i mikrokristallakh s pentagonalnoi simmetriei, formiruyuschikhsya pri elektrokristallizatsii metallov, TGU, Tolyatti, 2006, 206 pp.

[5] Vikarchuk A. A., Yasnikov I. S., Schastlivtsev V. M. i dr., Perspektivnye materialy: Struktura i metody issledovaniya, Uchebn. posobie, ed. D. L. Merson, MISiS, M., 2006, 324 pp.

[6] Yasnikov I. S., Vikarchuk A. A., “K voprosu o suschestvovanii polostei v ikosaedricheskikh malykh metallicheskikh chastitsakh elektroliticheskogo proiskhozhdeniya”, Pisma v ZhETF, 83:1 (2006), 46–49

[7] Toffoli T., Margolus N., Mashiny kletochnykh avtomatov, Mir, M., 1991, 280 pp.

[8] Limanova N. I., Mamzin E. A., “Diskretnoe modelirovanie volnovykh protsessov shestigrannym kletochnym avtomatom”, Sinergetika v estestvennykh naukakh, Tr. Mezhdunar. mezhdistsiplinar. nauchnoi konf. “Chetvertye Kurdyumovskie yubileinye chteniya”, TGU, Tver, 2008, 94–96

[9] Limanova N. I., “Raspredelennye parallelnye vychisleniya v zadachakh matematicheskogo modelirovaniya”, Kosmos, astronomiya i programmirovanie, Tr. Mezhdunar. nauchnoi konf. “Lavrovskie chteniya”, SPbGU, SPb., 2008, 211–215

[10] Bogachev K. Yu., Osnovy parallelnogo programmirovaniya, Binom. Laboratoriya znanii, M., 2003, 342 pp.

[11] Akira Nohara, Toru Imura, “Fivefold Twinned Small Copper Crystals Grown by Reduction of CuI”, Journal of Physical Society of Japan, 27:3 (1969), 793 | DOI

[12] Hofmeister H., “Habit and internal structure of multiply twinned gold particles on silver bromide films”, Thin Solid Films, 116:1–3 (1984), 151–162 | DOI

[13] Yasnikov I. S., Vikarchuk A. A., Denisova D. A., Gryzunova N. N., Tsybuskina I. I., “Poluchenie nanostrukturnykh ob'ektov s pentagonalnoi simmetriei metodom elektroosazhdeniya”, ZhTF, 77:10 (2007), 81–84

[14] Yasnikov I. S., Vikarchuk A. A., “Evolyutsiya obrazovaniya i rosta polosti v pentagonalnykh kristallakh elektroliticheskogo proiskhozhdeniya”, FTT, 48:8 (2006), 1352–1357

[15] Limanova N. I., Mamzin E. A., Talalova E. A., Vikarchuk A. A., “Modelirovanie protsessov formoobrazovaniya polostei v pentagonalnykh nanochastitsakh”, Mnogomasshtabnoe modelirovanie protsessov i struktur v nanotekhnologiyakh, Tr. II Vseros. konf. (MMPSN–2009), MIFI, M., 2009, 243–245