Contact line influence effect of viscoelastic sub-base on the disk dynamics
Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 2 (2009), pp. 186-192.

Voir la notice de l'article provenant de la source Math-Net.Ru

The article deals with the method that considers rolling friction moment of a rheological sub-base effect on the movement of firm circular disk. The authors give an example of this method application to analysis of the movement of the disk on the hummer brace, that has got deformation and damping properties responding to Kelvin model.
Keywords: nonholonomic constraint, rheological Kelvin model, relaxation time.
@article{VSGTU_2009_2_a20,
     author = {G. V. Pavlov and M. A. Kal'mova},
     title = {Contact line influence effect of viscoelastic sub-base on the disk dynamics},
     journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
     pages = {186--192},
     publisher = {mathdoc},
     number = {2},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGTU_2009_2_a20/}
}
TY  - JOUR
AU  - G. V. Pavlov
AU  - M. A. Kal'mova
TI  - Contact line influence effect of viscoelastic sub-base on the disk dynamics
JO  - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
PY  - 2009
SP  - 186
EP  - 192
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VSGTU_2009_2_a20/
LA  - ru
ID  - VSGTU_2009_2_a20
ER  - 
%0 Journal Article
%A G. V. Pavlov
%A M. A. Kal'mova
%T Contact line influence effect of viscoelastic sub-base on the disk dynamics
%J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
%D 2009
%P 186-192
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VSGTU_2009_2_a20/
%G ru
%F VSGTU_2009_2_a20
G. V. Pavlov; M. A. Kal'mova. Contact line influence effect of viscoelastic sub-base on the disk dynamics. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 2 (2009), pp. 186-192. http://geodesic.mathdoc.fr/item/VSGTU_2009_2_a20/

[1] Khedrikh K. S., Analitichka dinamika (mekhanika) diskretnikh naslednikh sistema, Univerzitet u Nishu, 2001 (na serbsk. yaz.)

[2] Ulchinkova V. E., Kukhar V. D., Reologicheskie modeli obobschennykh sploshnykh sred, TulGU, Tula, 2005, 140 pp.

[3] Ishlinskii A. Yu., Mekhanika, idei, zadachi, prilozheniya, Nauka, M., 1985, 623 pp.

[4] Ishlinskii A. Yu., “Trenie kacheniya”, Prikladnaya matematika i mekhanika, 2:2 (1938), 245–260

[5] Rzhanitsyn A. R., Nekotorye voprosy mekhaniki sistem, deformiruyuschikhsya vo vremeni, Gostekhizdat, M., 1949, 248 pp.