Global solvability of two unknown variables identification problem in one inverse problem for the integro-differential wave equation
Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 2 (2009), pp. 17-28.

Voir la notice de l'article provenant de la source Math-Net.Ru

Identification problem of the two coefficients, one of which is located under the integral sign in a hyperbolic equation and represents memory of the medium is studied, the other one defines a regular part of an impulse source. As an additional information Fourier image of the solution's trace of a direct problem on the hyperplane $y=0$ for two different values of transformation parameters is applied. The global solvability and the estimate of stability of the inverse problem are defined.
Keywords: inverse problem, integro-differential wave equation, hyperbolic equation, agreement condition, uniqueness, stability.
@article{VSGTU_2009_2_a2,
     author = {D. K. Durdiev},
     title = {Global solvability of two unknown variables identification problem in one inverse problem for the integro-differential wave equation},
     journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
     pages = {17--28},
     publisher = {mathdoc},
     number = {2},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGTU_2009_2_a2/}
}
TY  - JOUR
AU  - D. K. Durdiev
TI  - Global solvability of two unknown variables identification problem in one inverse problem for the integro-differential wave equation
JO  - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
PY  - 2009
SP  - 17
EP  - 28
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VSGTU_2009_2_a2/
LA  - ru
ID  - VSGTU_2009_2_a2
ER  - 
%0 Journal Article
%A D. K. Durdiev
%T Global solvability of two unknown variables identification problem in one inverse problem for the integro-differential wave equation
%J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
%D 2009
%P 17-28
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VSGTU_2009_2_a2/
%G ru
%F VSGTU_2009_2_a2
D. K. Durdiev. Global solvability of two unknown variables identification problem in one inverse problem for the integro-differential wave equation. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 2 (2009), pp. 17-28. http://geodesic.mathdoc.fr/item/VSGTU_2009_2_a2/

[1] Durdiev D. K., “Obratnaya zadacha dlya trekhmernogo volnovogo uravneniya v srede s pamyatyu”, Diskretnaya matematika i matematicheskii analiz, NGU, Novosibirsk, 1989, 19–26 | MR

[2] Durdiev D. K., “K voprosu o korrektnosti odnoi obratnoi zadachi dlya giperbolicheskogo integro-differentsialnogo uravneniya”, Sib. matem. zhurn., 33:3 (1992), 69–77 | MR | Zbl

[3] Lorenzi A., “An identification problem related to a nonlinear hyperbolic integro-differential equation”, Nonlinear Analysis: Theory, Methods and Applications, 22:1 (1994), 297–321 | DOI | MR

[4] Janno J., Von Welfersdorf L., “Inverse Problems for Identification of Memory Kernels in Viscoelasticity”, Math. Methods in Appl. Sciences, 20:4 (1997), 291–314 | 3.0.CO;2-W class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl

[5] Kurant R., Uravneniya s chastnymi proizvodnymi, Mir, M., 1964, 830 pp. | MR

[6] Romanov V. G., Ustoichivost v obratnykh zadachakh, Nauchnyi mir, M., 2005 | MR