Mathematical modeling of longitudinal blow of the system of homogeneous rods about rigid barrier at not-holding connections
Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 2 (2009), pp. 133-139.

Voir la notice de l'article provenant de la source Math-Net.Ru

Mathematical modeling of the longitudinal elastic central blow of the rod system, consisting of two homogeneous rods of various lengths and the area of cross section over a rigid barrier is implemented at not-holding connections.
Keywords: deformation, modeling, longitudinal blow, rod.
@article{VSGTU_2009_2_a14,
     author = {A. A. Bityurin and V. K. Manzhosov},
     title = {Mathematical modeling of longitudinal blow of the system of homogeneous rods about rigid barrier at not-holding connections},
     journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
     pages = {133--139},
     publisher = {mathdoc},
     number = {2},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGTU_2009_2_a14/}
}
TY  - JOUR
AU  - A. A. Bityurin
AU  - V. K. Manzhosov
TI  - Mathematical modeling of longitudinal blow of the system of homogeneous rods about rigid barrier at not-holding connections
JO  - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
PY  - 2009
SP  - 133
EP  - 139
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VSGTU_2009_2_a14/
LA  - ru
ID  - VSGTU_2009_2_a14
ER  - 
%0 Journal Article
%A A. A. Bityurin
%A V. K. Manzhosov
%T Mathematical modeling of longitudinal blow of the system of homogeneous rods about rigid barrier at not-holding connections
%J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
%D 2009
%P 133-139
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VSGTU_2009_2_a14/
%G ru
%F VSGTU_2009_2_a14
A. A. Bityurin; V. K. Manzhosov. Mathematical modeling of longitudinal blow of the system of homogeneous rods about rigid barrier at not-holding connections. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 2 (2009), pp. 133-139. http://geodesic.mathdoc.fr/item/VSGTU_2009_2_a14/

[1] Bityurin A. A., Manzhosov V. K., “Izmenenie deformatsii na uchastkakh sterzhnevoi sistemy posle povtornogo udara v kontaktnom sechenii”, Vestn. UlGTU, 2007, no. 3, 23–28

[2] Aleksandrov E. V., Sokolinskii V. B., Prikladnaya teoriya i raschet udarnykh sistem, Nauka, M., 1969, 199 pp.

[3] Alimov O. D., Manzhosov V. K., Eremyants V. E., Rasprostranenie voln deformatsii v udarnykh sistemakh, Nauka, M., 1985, 354 pp.

[4] Bityurin A. A., Manzhosov V. K., “Modelirovanie prodolnogo udara odnorodnykh sterzhnei pri neuderzhivayuschikh svyazyakh”, Vestn. UlGTU, 2005, no. 3, 23–25

[5] Manzhosov V. K., Modeli prodolnogo udara, Ulyanovsk, 2006, 159 pp.

[6] Darkov A. V., Shpiro G. S., Soprotivlenie materialov, Vyssh. shk., M., 2003, 641 pp.