Solution of plane nonlinear stochastic problem with spectral representation method
Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 2 (2009), pp. 99-106.

Voir la notice de l'article provenant de la source Math-Net.Ru

Solution of a stress condition of stochastic heterogeneous plate problem was obtained on the basis of statistic linearization of determinative creep equation and by using a method of spectral representation of random functions. Stochasticity is introduced into determinative creep equation by random function of two variables. It was proved, that stochastic nonhomogeneities of material can lead to significant fluctuations of stress fields.
Keywords: steady creep stage, statistic linearization, stochastic problem, spectral representation of variate.
@article{VSGTU_2009_2_a10,
     author = {N. N. Popov and L. V. Kovalenko and M. A. Yashin},
     title = {Solution of plane nonlinear stochastic problem with spectral representation method},
     journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
     pages = {99--106},
     publisher = {mathdoc},
     number = {2},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGTU_2009_2_a10/}
}
TY  - JOUR
AU  - N. N. Popov
AU  - L. V. Kovalenko
AU  - M. A. Yashin
TI  - Solution of plane nonlinear stochastic problem with spectral representation method
JO  - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
PY  - 2009
SP  - 99
EP  - 106
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VSGTU_2009_2_a10/
LA  - ru
ID  - VSGTU_2009_2_a10
ER  - 
%0 Journal Article
%A N. N. Popov
%A L. V. Kovalenko
%A M. A. Yashin
%T Solution of plane nonlinear stochastic problem with spectral representation method
%J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
%D 2009
%P 99-106
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VSGTU_2009_2_a10/
%G ru
%F VSGTU_2009_2_a10
N. N. Popov; L. V. Kovalenko; M. A. Yashin. Solution of plane nonlinear stochastic problem with spectral representation method. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 2 (2009), pp. 99-106. http://geodesic.mathdoc.fr/item/VSGTU_2009_2_a10/

[1] Kuznetsov V. A., “Polzuchest stokhasticheski neodnorodnykh sred v usloviyakh ploskogo napryazhennogo sostoyaniya”, Matematicheskaya fizika, KuAI, Kuibyshev, 1976, 69–74

[2] Radchenko V. P., Popov N. N., “Statisticheskie kharakteristiki polei napryazhenii i deformatsii pri ustanovivsheisya polzuchesti stokhasticheski neodnorodnoi ploskosti”, Izv. vuzov. Mashinostroenie, 2006, no. 2, 3–11

[3] Popov N. N., Kovalenko L. V., “Polya napryazhenii na granitse stokhasticheski neodnorodnoi poluploskosti pri polzuchesti”, Vestn. Sam. gos. tekhn. un-ta. Ser. Fiz.-mat. nauki, 2006, no. 42, 61–66 | DOI

[4] Popov N. N., Samarin Yu. P., “Issledovanie polei napryazhenii vblizi granitsy stokhasticheski neodnorodnoi poluploskosti pri polzuchesti”, PMTF, 1981, no. 1, 159–164

[5] Sveshnikov A. A., Prikladnye metody teorii sluchainykh funktsii, Nauka, M., 1968, 464 pp. | MR | Zbl