Boundary Effect Modeling In the Problem of Stochastic Heterogeneous Stripe Tension~Under~Creep
Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 1 (2009), pp. 85-94.

Voir la notice de l'article provenant de la source Math-Net.Ru

The boundary effect in stochastic creep boundary problem of endless heterogeneous stripe tension was modeled. Determining creep factors which were applied in compliance with a nonlinear theory of viscid flow are formulated in a stochastic form. The problem is solved approximately with disturbance method related to tensions tensor component. Statistical analysis was performed on the basis of solution allowing defining the basic features of boundary effect.
Keywords: creep, stochastic heterogeneous stripe, stochastic field of stress and strain.
@article{VSGTU_2009_1_a9,
     author = {L. V. Kovalenko and N. N. Popov},
     title = {Boundary {Effect} {Modeling} {In} the {Problem} of {Stochastic} {Heterogeneous} {Stripe} {Tension~Under~Creep}},
     journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
     pages = {85--94},
     publisher = {mathdoc},
     number = {1},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGTU_2009_1_a9/}
}
TY  - JOUR
AU  - L. V. Kovalenko
AU  - N. N. Popov
TI  - Boundary Effect Modeling In the Problem of Stochastic Heterogeneous Stripe Tension~Under~Creep
JO  - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
PY  - 2009
SP  - 85
EP  - 94
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VSGTU_2009_1_a9/
LA  - ru
ID  - VSGTU_2009_1_a9
ER  - 
%0 Journal Article
%A L. V. Kovalenko
%A N. N. Popov
%T Boundary Effect Modeling In the Problem of Stochastic Heterogeneous Stripe Tension~Under~Creep
%J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
%D 2009
%P 85-94
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VSGTU_2009_1_a9/
%G ru
%F VSGTU_2009_1_a9
L. V. Kovalenko; N. N. Popov. Boundary Effect Modeling In the Problem of Stochastic Heterogeneous Stripe Tension~Under~Creep. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 1 (2009), pp. 85-94. http://geodesic.mathdoc.fr/item/VSGTU_2009_1_a9/

[1] Popov N. N., Samarin Yu. P., “Issledovanie polei napryazhenii vblizi granitsy stokhasticheski neodnorodnoi ploskosti pri polzuchesti”, PMTF, 1988, no. 1, 159–164 | DOI

[2] Popov N. N., Kovalenko L. V., “Polya napryazhenii na granitse stokhasticheski neodnorodnoi poluploskosti pri polzuchesti”, Vestn. Sam. gos. tekhn. un-ta. Ser. Fiz.-mat. nauki, 2006, no. 42, 61–66 | DOI

[3] Popov N. N., Kovalenko L. V., “Nelineinaya stokhasticheskaya zadacha o rastyazhenii poluprostranstva v usloviyakh polzuchesti”, Vestn. Sam. gos. tekhn. un-ta. Ser. Fiz.-mat. nauki, 2007, no. 1(14), 56–61 | DOI

[4] Popov N. N., Samarin Yu. P., “Prostranstvennaya zadacha statsionarnoi polzuchesti stokhasticheski neodnorodnoi sredy”, PMTF, 1985, no. 2, 150–155 | DOI

[5] Lomakin V. A., Statisticheskie zadachi mekhaniki tverdykh deformiruemykh tel, Nauka, M., 1970, 139 pp. | Zbl

[6] Bolotin V. V., Metody teorii veroyatnostei i teorii nadezhnosti v raschëtakh sooruzhenii, Stroiizdat, M., 1982, 352 pp.