Tension with Torsion. Message 3. Iterative Method of Equilibrium parameters Calculation and Stability of Deformation Process in Mechanical System at Mixed Loading Conditions
Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 1 (2009), pp. 66-74.

Voir la notice de l'article provenant de la source Math-Net.Ru

Research of a mechanical system that was started in the previous articles is continued here; in order realize the tension of a sample with torsion under mixed loading conditions. Iteration procedure is proposed for solving of non-linear equilibrium equations proposing elastic-plastic sample behavior. Correlation between iteration procedure divergence start and loss of deformation process stability is established.
Keywords: tension with torsion, iteration procedure, stability, stability loss.
@article{VSGTU_2009_1_a7,
     author = {V. V. Struzhanov and E. Yu. Prosviryakov},
     title = {Tension with {Torsion.} {Message} 3. {Iterative} {Method} of {Equilibrium} parameters {Calculation} and {Stability} of {Deformation} {Process} in {Mechanical} {System} at {Mixed} {Loading} {Conditions}},
     journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
     pages = {66--74},
     publisher = {mathdoc},
     number = {1},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGTU_2009_1_a7/}
}
TY  - JOUR
AU  - V. V. Struzhanov
AU  - E. Yu. Prosviryakov
TI  - Tension with Torsion. Message 3. Iterative Method of Equilibrium parameters Calculation and Stability of Deformation Process in Mechanical System at Mixed Loading Conditions
JO  - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
PY  - 2009
SP  - 66
EP  - 74
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VSGTU_2009_1_a7/
LA  - ru
ID  - VSGTU_2009_1_a7
ER  - 
%0 Journal Article
%A V. V. Struzhanov
%A E. Yu. Prosviryakov
%T Tension with Torsion. Message 3. Iterative Method of Equilibrium parameters Calculation and Stability of Deformation Process in Mechanical System at Mixed Loading Conditions
%J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
%D 2009
%P 66-74
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VSGTU_2009_1_a7/
%G ru
%F VSGTU_2009_1_a7
V. V. Struzhanov; E. Yu. Prosviryakov. Tension with Torsion. Message 3. Iterative Method of Equilibrium parameters Calculation and Stability of Deformation Process in Mechanical System at Mixed Loading Conditions. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 1 (2009), pp. 66-74. http://geodesic.mathdoc.fr/item/VSGTU_2009_1_a7/

[1] Struzhanov V. V., Prosviryakov E. Yu., “Rastyazhenie s krucheniem. Soobschenie 1: Svoistva materiala”, Vestn. Sam. gos. tekhn. un-ta. Ser. Fiz.-mat. nauki, 2008, no. 1(16), 36–44 | DOI

[2] Struzhanov V. V., Prosviryakov E. Yu., “Rastyazhenie s krucheniem. Soobschenie 2: Ustoichivost protsessa deformirovaniya obraztsa v mekhanicheskoi sisteme. Zhestkoe i myagkoe nagruzheniya”, Vestn. Sam. gos. tekhn. un-ta. Ser. Fiz.-mat. nauki, 2008, no. 2(17), 77–86 | DOI

[3] Struzhanov V. V., Zhizherin S. V., “Model povrezhdayuschegosya materiala i iteratsionnye metody rascheta napryazhennogo sostoyaniya pri kruchenii”, Vychislitelnye tekhnologii, 5:2 (2000), 92–104 | Zbl

[4] Zhizherin S. V., Struzhanov V. V., “Iteratsionnye metody i ustoichivost v zadache o ravnomernom deformirovanii shara s tsentralnoi zonoi iz povrezhdayuschegosya materiala”, Izv. RAN. MTT, 2004, no. 2, 114–125

[5] Struzhanov V. V., Mironov V. I., Deformatsionnoe razuprochnenie materiala v elementakh konstruktsii, Izd-vo UrO RAN, Ekaterinburg, 1995, 192 pp.

[6] Poston T., Styuart I., Teoriya katastrof i ee prilozheniya, Mir, M., 1980, 608 pp. | MR | Zbl

[7] Gilmor R., Prikladnaya teoriya katastrof: V 2-kh knigakh. Kn. 1., Mir, M., 1984, 350 pp. | Zbl

[8] Postnikov M. M., Ustoichivye mnogochleny, Nauka, M., 1981, 176 pp. | MR

[9] Khorn R., Dzhonson Ch., Matrichnyi analiz, Mir, M., 1984, 655 pp. | MR

[10] Gilmor R., Prikladnaya teoriya katastrof: V 2-kh knigakh. Kn.2., Mir, M., 1984, 285 pp. | Zbl