Voir la notice de l'article provenant de la source Math-Net.Ru
@article{VSGTU_2009_1_a6, author = {Yu. I. Kadashevich and S. P. Pomytkin}, title = {Description of {Creep} and {Stress} {Relaxation} {Processes} in {Materials} {Within} {Endochronic} {Theory} of {Non-elasticity} for {Large} {Deformations}}, journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences}, pages = {61--65}, publisher = {mathdoc}, number = {1}, year = {2009}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/VSGTU_2009_1_a6/} }
TY - JOUR AU - Yu. I. Kadashevich AU - S. P. Pomytkin TI - Description of Creep and Stress Relaxation Processes in Materials Within Endochronic Theory of Non-elasticity for Large Deformations JO - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences PY - 2009 SP - 61 EP - 65 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VSGTU_2009_1_a6/ LA - ru ID - VSGTU_2009_1_a6 ER -
%0 Journal Article %A Yu. I. Kadashevich %A S. P. Pomytkin %T Description of Creep and Stress Relaxation Processes in Materials Within Endochronic Theory of Non-elasticity for Large Deformations %J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences %D 2009 %P 61-65 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/VSGTU_2009_1_a6/ %G ru %F VSGTU_2009_1_a6
Yu. I. Kadashevich; S. P. Pomytkin. Description of Creep and Stress Relaxation Processes in Materials Within Endochronic Theory of Non-elasticity for Large Deformations. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 1 (2009), pp. 61-65. http://geodesic.mathdoc.fr/item/VSGTU_2009_1_a6/
[1] Valanis K. C., Wu H. C., “Endochronic representation of cyclic creep and relaxation of metals”, Trans. of ASME., E 42:1 (1975), 67–73 | DOI | Zbl
[2] Watanabe O., Atluri S. N., “Constitutive modeling of cyclic plasticity and creep, using an internal time concept”, Intern. J. of Plasticity, 2:2 (1986), 107–134 | DOI | Zbl
[3] Lee C. F., “A simple endochronic transient creep model of metals with application to variable temperature creep”, Intern. J. of Plasticity, 12:2 (1996), 239–253 | DOI | Zbl
[4] Fedorovskii G. D., “Ob endokhronnom predstavlenii tekhnicheskikh teorii nelineinoi polzuchesti”, Matemat. modelirovanie v mekhanike sploshnykh sred. Metody granichnykh i konechnykh elementov, Trudy XXI mezhdunarodnoi konferentsii (4–7 oktyabrya 2005 g., Sankt–Peterburg), VVM, SPb, 2006, 470–474
[5] Khoei A. R., Bakhshiani A., Modif M., “An implicit algorithm for hypoelastic-plastic and hypoelastic-viscoplastic endochronic theory in finite strain isotropic-kinematic hardening model”, Intern. J. of Solids and Struct., 40:13–14 (2003), 3393–3423 | DOI | Zbl
[6] Kadashevich Yu. I., Pomytkin S. P., “Endokhronnaya teoriya polzuchesti, uchityvayuschaya konechnye deformatsii”, Vestn. Sam. gos. tekhn. un-ta. Ser. Fiz.-mat. nauki, 2004, no. 26, 83–85 | DOI
[7] Brovko G. L., “Svoistva i integrirovanie nekotorykh proizvodnykh ot tenzornykh protsessov v mekhanike sploshnoi sredy”, Izvest. AN SSSR. MTT, 1990, no. 1, 54–60 | MR
[8] Montheillet F., Cohen M., Jonas J. J., “Axial stresses and texture development during the torsion testing of Al, Cu, $\alpha$-Fe ”, Acta Metallurgica, 32:11 (1984), 2077–2089 | DOI
[9] Ivanov B. F., Kadashevich Yu. I., Pomytkin S. P., “Endokhronnaya teoriya neuprugosti, uchityvayuschaya techenie, zatverdevanie i mikrorazrushenie materiala”, Nauchno-tekhnicheskie problemy prognozirovaniya nadezhnosti i dolgovechnosti konstruktsii i metody ikh resheniya. T. 1., Tr. mezhdunarod. kon-tsii RELMAS–2008 (17–20 iyunya 2008 g.,Sankt–Peterburg), SPbGTU, SPb, 2008, 143–146