Critical States of a Damaged Non-linearly Deformed Medium During High-speed Collision with an Obstacle
Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 1 (2009), pp. 47-60.

Voir la notice de l'article provenant de la source Math-Net.Ru

Generalized model of the nonlinear interconnected deformation and fracture of a damaged polycrystalline media is presented at high-speed shock influence conditions. Geometrical non-linearity caused by finite non-linear deformations depending on speed, behavior of materials with variable micro structure, anisotropic hardening and Baushinger-effect are considered. Particular attention is paid to problems of damage localization, progression and final fracture of non-linearity deformed bodies. Justification of the proposed model is implemented and nonlinear wave processes in a thin-walled shell are studied at high-speed collision condition with an obstacle.
Keywords: nonlinear deformable medium, damaging, shells, shock loading, mathematical simulation.
Mots-clés : fracture
@article{VSGTU_2009_1_a5,
     author = {V. A. Petushkov},
     title = {Critical {States} of a {Damaged} {Non-linearly} {Deformed} {Medium} {During} {High-speed} {Collision} with an {Obstacle}},
     journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
     pages = {47--60},
     publisher = {mathdoc},
     number = {1},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGTU_2009_1_a5/}
}
TY  - JOUR
AU  - V. A. Petushkov
TI  - Critical States of a Damaged Non-linearly Deformed Medium During High-speed Collision with an Obstacle
JO  - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
PY  - 2009
SP  - 47
EP  - 60
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VSGTU_2009_1_a5/
LA  - ru
ID  - VSGTU_2009_1_a5
ER  - 
%0 Journal Article
%A V. A. Petushkov
%T Critical States of a Damaged Non-linearly Deformed Medium During High-speed Collision with an Obstacle
%J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
%D 2009
%P 47-60
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VSGTU_2009_1_a5/
%G ru
%F VSGTU_2009_1_a5
V. A. Petushkov. Critical States of a Damaged Non-linearly Deformed Medium During High-speed Collision with an Obstacle. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 1 (2009), pp. 47-60. http://geodesic.mathdoc.fr/item/VSGTU_2009_1_a5/

[1] Zohdi T., “Homogenization Methods and Multiscale Modeling”, Encyclopedia of Computational Mechanics. Vol. 2, Solids and Structures, E. Stein, R de Borst, T. J. R. Hughes (eds.), John Wiley Sons, Chichester, 2004, 407–430 | MR

[2] Gosh S., Lee K., Moorthy S., “Two–Scale Analysis of Heterogeneous Elastic–Plastic Materials with Asymptotic Homogenization and Voronoi Cell Finite Elements”, Comp. Meth. Appl. Mech. Eng., 132 (1996), 63–116 | DOI

[3] Hutchinson J. W., “Plasticity at the micron scale”, Int. J. Solids Struct, 37 (2000), 225–238 | DOI | MR | Zbl

[4] Needleman A., “Computational mechanics at the mesoscale”, Acta Mater, 48 (2000), 105–124 | DOI | MR

[5] Kukudzhanov V. N., “O strukture polos lokalizatsii deformirovanii i nelokalnoi plastichnosti pri dinamicheskom nagruzhenii”, Izv. RAN. MTT, 1998, no. 6, 104–115

[6] Truesdell C., Noll W., “The non-linear field theories of mechanics”, Handbuch der Physik, III/3, Springer, N.Y., 1965, 602 pp. | DOI | MR

[7] Petushkov V. A., “Lokalnye techeniya povrezhdaemoi deformiruemoi sredy pri udarnykh vzaimodeistviyakh s kavitiruyuschei zhidkostyu”, Izv. RAN. MZhG, 2007, no. 3, 121–133 \newpage | Zbl

[8] Shockey D. A., Seaman L., Curran D. R., “The microstatistical fracture mechanics approach to dynamic fracture problem”, Int. J. Fract, 27:1 (1985), 145–157 | DOI

[9] Nemes J. A., Eftis J., Randles P. W., “Viscoplastic constitutive modeling of high strain-rate deformation, material damage and spall fracture”, J. Appl. Mech., 57:2 (1990), 282–291 | DOI

[10] Amar G., Dufailly J., “Identification and validation of visco plastic damage constitutive equations”, Eur. J. Mech., 1993, no. A 2, 197–218

[11] Bessiling Dzh. F., “Teoriya plasticheskogo techeniya nachalno-izotropnogo materiala, kotoryi anizotropno uprochnyaetsya pri plasticheskikh deformatsiyakh”, Mekhanika, Period. sb.; Per. s inostr. yaz, 2, Mir, M., 1961, 124–168

[12] Petushkov V. A., Kaschenko V. A., “Strukturnoe modelirovanie nelineinykh protsessov deformirovaniya konstruktsii s treschinami pri tsiklicheskikh vozdeistviyakh”, Mashinovedenie, 1988, no. 1, 3–11

[13] Petushkov V. A., “Statisticheskie faktory v analize protsessov deformirovaniya i otsenke resursa”, Statisticheskie zakonomernosti malotsiklovogo razrusheniya, Nauka, M., 1989, 236–245

[14] Petushkov V. A., Frolov K. V., “Dinamika gidrouprugikh sistem pri impulsnom vozbuzhdenii”, Dinamika konstruktsii gidroaerouprugikh sistem, Nauka, M., 2002, 162–202

[15] Petushkov V. A., Skorokhodova N. V., “Rasprostranenie udarnykh voln v nelineino deformiruemykh obolochkakh slozhnoi formy”, Vestn. Udmurt. un-ta. Matematika. Mekhanika. Kompyuternye nauki, 2008, no. 3, 81–93