Some Special Functions in the Solution To Cauchy Problem for a Fractional Oscillating Equation
Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 1 (2009), pp. 276-279

Voir la notice de l'article provenant de la source Math-Net.Ru

Some special functions, concerning Mittag–Leffler type function, are introduced. The solution to Cauchy problem for some linear non-homogeneous fractional oscillating equation in terms of these functions are given.
Keywords: Mittag-Leffler type function, Rieman-Liouville's franctional integrals and derivates, Caushy problem for a fractional occilating equation.
@article{VSGTU_2009_1_a31,
     author = {E. N. Ogorodnikov and N. S. Yashagin},
     title = {Some {Special} {Functions} in the {Solution} {To} {Cauchy} {Problem} for a {Fractional} {Oscillating} {Equation}},
     journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
     pages = {276--279},
     publisher = {mathdoc},
     number = {1},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGTU_2009_1_a31/}
}
TY  - JOUR
AU  - E. N. Ogorodnikov
AU  - N. S. Yashagin
TI  - Some Special Functions in the Solution To Cauchy Problem for a Fractional Oscillating Equation
JO  - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
PY  - 2009
SP  - 276
EP  - 279
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VSGTU_2009_1_a31/
LA  - ru
ID  - VSGTU_2009_1_a31
ER  - 
%0 Journal Article
%A E. N. Ogorodnikov
%A N. S. Yashagin
%T Some Special Functions in the Solution To Cauchy Problem for a Fractional Oscillating Equation
%J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
%D 2009
%P 276-279
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VSGTU_2009_1_a31/
%G ru
%F VSGTU_2009_1_a31
E. N. Ogorodnikov; N. S. Yashagin. Some Special Functions in the Solution To Cauchy Problem for a Fractional Oscillating Equation. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 1 (2009), pp. 276-279. http://geodesic.mathdoc.fr/item/VSGTU_2009_1_a31/