Some Special Functions in the Solution To Cauchy Problem for a Fractional Oscillating Equation
Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 1 (2009), pp. 276-279.

Voir la notice de l'article provenant de la source Math-Net.Ru

Some special functions, concerning Mittag–Leffler type function, are introduced. The solution to Cauchy problem for some linear non-homogeneous fractional oscillating equation in terms of these functions are given.
Keywords: Mittag-Leffler type function, Rieman-Liouville's franctional integrals and derivates, Caushy problem for a fractional occilating equation.
@article{VSGTU_2009_1_a31,
     author = {E. N. Ogorodnikov and N. S. Yashagin},
     title = {Some {Special} {Functions} in the {Solution} {To} {Cauchy} {Problem} for a {Fractional} {Oscillating} {Equation}},
     journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
     pages = {276--279},
     publisher = {mathdoc},
     number = {1},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGTU_2009_1_a31/}
}
TY  - JOUR
AU  - E. N. Ogorodnikov
AU  - N. S. Yashagin
TI  - Some Special Functions in the Solution To Cauchy Problem for a Fractional Oscillating Equation
JO  - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
PY  - 2009
SP  - 276
EP  - 279
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VSGTU_2009_1_a31/
LA  - ru
ID  - VSGTU_2009_1_a31
ER  - 
%0 Journal Article
%A E. N. Ogorodnikov
%A N. S. Yashagin
%T Some Special Functions in the Solution To Cauchy Problem for a Fractional Oscillating Equation
%J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
%D 2009
%P 276-279
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VSGTU_2009_1_a31/
%G ru
%F VSGTU_2009_1_a31
E. N. Ogorodnikov; N. S. Yashagin. Some Special Functions in the Solution To Cauchy Problem for a Fractional Oscillating Equation. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 1 (2009), pp. 276-279. http://geodesic.mathdoc.fr/item/VSGTU_2009_1_a31/

[1] Samko S. G., Kilbas A. A., Marichev O. I., Integraly i proizvodnye drobnogo poryadka i nekotorye ikh prilozheniya, Nauka i tekhnika, Minsk, 1987, 688 pp. | MR | Zbl

[2] Nakhushev A. M., Drobnoe ischislenie i ego primenie, Fizmatlit, M., 2003, 272 pp. | Zbl

[3] Beitman G., Erdeii A., Vysshie transtsendentnye funktsii v 3-x t, T. 3. Ellipticheskie i avtomorfnye funktsii. Funktsii Lame i Mate, Nauka, M., 1967, 299 pp.

[4] Dzhrbashyan M. M., Integralnye preobrazovaniya i predstavleniya funktsii v kompleksnoi oblasti, Nauka, M., 1966, 672 pp. | Zbl

[5] Nakhusheva V. A., Matematicheskoe modelirovanie nelokalnykh fizicheskikh protsessov v sredakh s fraktalnoi strukturoi, Avtoref. dis. ... d-ra fiz.-mat. nauk, Taganrog, 2008, 30 pp.

[6] Babakov I. M., Teoriya kolebanii, Nauka, M., 1968, 560 pp. | MR

[7] Gutov A. Z., “Analog formuly Eilera dlya obobschennogo sinusa i obobschennogo kosinusa”, Mat. modelirovanie i kraevye zadachi, Tr. Tretei Vseros. nauchn. konf. — Ch. 3, SamGTU, Samara, 2006, 97–98

[8] Ogorodnikov E. N., Yashagin N. C., “Vynuzhdennye kolebaniya drobnykh ostsillyatorov”, Mat. modelirovanie i kraevye zadachi, Tr. Pyatoi Vseros. nauchn. konf. — Ch. 1, SamGTU, Samara, 2008, 215–221

[9] Ogorodnikov E. N., Yashagin N. C., “Analiz vynuzhdennykh kolebanii drobnykh ostsillyatorov”, Mezhdunarodnaya konferentsiya po matematicheskoi fizike i eë prilozheniyam, Tez. dokl., SamGU, Samara, 2008, 141–143

[10] Meilanov R. P., Yanpolov M. S., “Osobennosti fazovoi traektorii «fraktalnogo» ostsillyatora”, Pisma v ZhTF, 28:1 (2002), 67–73