Construction of General Solution of Degenerating Polmeire--Lunda--Redge System
Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 1 (2009), pp. 271-275.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is demonstrated that degenerating Polmeire–Lunda–Redge system is a Liovielle-type system, formulas were obtained for $x$- and $y$-integrals at the first and the second orders. It was demonstrated how they can be used in order to construct a general solution on this equation system.
Mots-clés : invariants of Laplace, equation of Liovielle type
Keywords: integrals.
@article{VSGTU_2009_1_a30,
     author = {A. M. Gurieva},
     title = {Construction of {General} {Solution} of {Degenerating} {Polmeire--Lunda--Redge} {System}},
     journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
     pages = {271--275},
     publisher = {mathdoc},
     number = {1},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGTU_2009_1_a30/}
}
TY  - JOUR
AU  - A. M. Gurieva
TI  - Construction of General Solution of Degenerating Polmeire--Lunda--Redge System
JO  - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
PY  - 2009
SP  - 271
EP  - 275
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VSGTU_2009_1_a30/
LA  - ru
ID  - VSGTU_2009_1_a30
ER  - 
%0 Journal Article
%A A. M. Gurieva
%T Construction of General Solution of Degenerating Polmeire--Lunda--Redge System
%J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
%D 2009
%P 271-275
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VSGTU_2009_1_a30/
%G ru
%F VSGTU_2009_1_a30
A. M. Gurieva. Construction of General Solution of Degenerating Polmeire--Lunda--Redge System. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 1 (2009), pp. 271-275. http://geodesic.mathdoc.fr/item/VSGTU_2009_1_a30/

[1] Zhiber A. V., Sokolov V. V., “Tochno integriruemye giperbolicheskie uravneniya liuvillevskogo tipa”, Uspekhi matemat. nauk, 56:1(337) (2001), 63–106 | DOI | MR | Zbl

[2] Zhiber A. V., Sokolov V. V., Startsev S. Ya., “O nelineinykh giperbolicheskikh uravneniyakh, integriruemykh po Darbu”, Dokl. RAN, 343:6 (1995), 746–748 | MR | Zbl

[3] Gureva A. M., “Sistemy uravnenii $u_{xy}=\varphi(u, v, u_{x}, u_{y}),$ $ v_{xy}=\phi(u, v, v_{x}, v_{y}) $ s nulevymi obobschënnymi invariantami Laplasa vtorogo poryadka”, Mezhdunarodn. Ufimskaya zimnyaya shk.-konf. po matemat. i fizike dlya student., aspirant. i molodykh uchënykh, T. 1: Matematika, BashGU, Ufa, 2005, 195–205