Elliptic Threshold Secret Division Scheme
Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 1 (2009), pp. 251-259.

Voir la notice de l'article provenant de la source Math-Net.Ru

The new aspect of proactive systems realization was developed based on elliptic curves arithmetic. Neural network model of secret division scheme at elliptic curve is introduced. Prolongation mechanism of the scheme was developed. Neural network model of secret regeneration is introduced. Method of construction and functioning report of the scheme were developed. Calculation of safe time period of secret generator settings existence is introduced. Calculation of complexity and time needed for prolongation of this model is introduced.
Keywords: neural network of a final ring, secret sharing schemes, system of residual classes, elliptic curves.
@article{VSGTU_2009_1_a27,
     author = {A. B. Spel'nikov},
     title = {Elliptic {Threshold} {Secret} {Division} {Scheme}},
     journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
     pages = {251--259},
     publisher = {mathdoc},
     number = {1},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGTU_2009_1_a27/}
}
TY  - JOUR
AU  - A. B. Spel'nikov
TI  - Elliptic Threshold Secret Division Scheme
JO  - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
PY  - 2009
SP  - 251
EP  - 259
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VSGTU_2009_1_a27/
LA  - ru
ID  - VSGTU_2009_1_a27
ER  - 
%0 Journal Article
%A A. B. Spel'nikov
%T Elliptic Threshold Secret Division Scheme
%J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
%D 2009
%P 251-259
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VSGTU_2009_1_a27/
%G ru
%F VSGTU_2009_1_a27
A. B. Spel'nikov. Elliptic Threshold Secret Division Scheme. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 1 (2009), pp. 251-259. http://geodesic.mathdoc.fr/item/VSGTU_2009_1_a27/

[1] Bapichev S. G., Kpiptogpafiya bez sekretov, Nauka, M., 1998, 105 pp.

[2] Rostovtsev A. G., Makhovenko E. B., Teoreticheskaya kriptografiya, Professional, SPb., 2005, 478 pp.

[3] GOST R 34.10–2001. Protsessy formirovaniya i proverki elektronnoi tsifrovoi podpisi. — Vzamen GOST 34.10–94; Vved. 12.09.2001, Izd-vo standartov, M., 2001

[4] Koblits N., Vvedenie v ellipticheskie krivye i modulyarnye formy, per. s angl, Mir, M., 1988, 320 pp. | MR

[5] Vasilenko O. N., Teoretiko chislovye algoritmy v kriptografii, MTsNMO, M., 2003, 328 pp. | MR

[6] Cohen H., Miyaji A., Ono T., “Efficient Elliptic Curve Exponentiation Using Mixed Coordinates”, Advances in Cryptology – ASIACRYPT'98, Proc. of the Int. Conf. on the Theory and Applications of Cryptology and Information Security: Advances in Cryptology, Lecture Notes in Computer Science, 1514, Springer, Berlin / Heidelberg, 1998, 51–65 | DOI | MR | Zbl

[7] Herzberg A., Jarecki S., Krawczyk H., Yung M., “Proactive secret sharing or how to cope with perpetual leakage”, Proc. of CRYPTO '95, Lecture Notes in Comp. Sci., 963, Springer-Verlag, 1995, 339–352 | Zbl