On Direct and Inverse Problems for the Hoff Equations on Graph
Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 1 (2009), pp. 6-17

Voir la notice de l'article provenant de la source Math-Net.Ru

The Hoff equations defined on graph describe the dynamics of H-beams construction buckling. Generalization of the direct problem which is the Cauchy problem is obtained. For the first time the inverse coefficient problem is studied which is modeling the experiment that allows with additional measurements not only to study the construction buckling dynamics but also the characteristics of beam material. The unique solution of this problem is demonstrated.
Keywords: the Hoff equations on graph, phase space, an inverse problem.
@article{VSGTU_2009_1_a0,
     author = {G. A. Sviridyuk and A. A. Bayazitova},
     title = {On {Direct} and {Inverse} {Problems} for the {Hoff} {Equations} on {Graph}},
     journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
     pages = {6--17},
     publisher = {mathdoc},
     number = {1},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGTU_2009_1_a0/}
}
TY  - JOUR
AU  - G. A. Sviridyuk
AU  - A. A. Bayazitova
TI  - On Direct and Inverse Problems for the Hoff Equations on Graph
JO  - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
PY  - 2009
SP  - 6
EP  - 17
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VSGTU_2009_1_a0/
LA  - ru
ID  - VSGTU_2009_1_a0
ER  - 
%0 Journal Article
%A G. A. Sviridyuk
%A A. A. Bayazitova
%T On Direct and Inverse Problems for the Hoff Equations on Graph
%J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
%D 2009
%P 6-17
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VSGTU_2009_1_a0/
%G ru
%F VSGTU_2009_1_a0
G. A. Sviridyuk; A. A. Bayazitova. On Direct and Inverse Problems for the Hoff Equations on Graph. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 1 (2009), pp. 6-17. http://geodesic.mathdoc.fr/item/VSGTU_2009_1_a0/