Modified grid method for solving linear differential equation equipped with variable coefficients based on Taylor series
Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 2 (2008), pp. 60-65.

Voir la notice de l'article provenant de la source Math-Net.Ru

The modified grid method for solving value boundary problems for the linear differential equations based on Taylor development is described. It was demonstrated that the accuracy of the proposed method is much greater than that of a classical grids method. The results of numerical experiments are quoted.
Keywords: ordinary differential equations, grid method, Taylor development, closeness, measure of inaccuracy.
@article{VSGTU_2008_2_a6,
     author = {V. P. Radchenko and A. A. Usov},
     title = {Modified grid method for solving linear differential equation equipped with variable coefficients based on {Taylor} series},
     journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
     pages = {60--65},
     publisher = {mathdoc},
     number = {2},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGTU_2008_2_a6/}
}
TY  - JOUR
AU  - V. P. Radchenko
AU  - A. A. Usov
TI  - Modified grid method for solving linear differential equation equipped with variable coefficients based on Taylor series
JO  - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
PY  - 2008
SP  - 60
EP  - 65
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VSGTU_2008_2_a6/
LA  - ru
ID  - VSGTU_2008_2_a6
ER  - 
%0 Journal Article
%A V. P. Radchenko
%A A. A. Usov
%T Modified grid method for solving linear differential equation equipped with variable coefficients based on Taylor series
%J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
%D 2008
%P 60-65
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VSGTU_2008_2_a6/
%G ru
%F VSGTU_2008_2_a6
V. P. Radchenko; A. A. Usov. Modified grid method for solving linear differential equation equipped with variable coefficients based on Taylor series. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 2 (2008), pp. 60-65. http://geodesic.mathdoc.fr/item/VSGTU_2008_2_a6/

[1] Samarskii A. A., Gulin A. V., Chislennye metody, Nauka, M., 1989, 432 pp., ISBN 5–02–013996–3

[2] Samarskii A. A., Nikolaev E. S., Metody resheniya setochnykh uravnenii, Nauka, M., 1978, 591 pp. | MR | Zbl

[3] Bakhvalov N. S., Zhidkov N. P., Kobelkov G. M., Chislennye metody, Laboratoriya bazovykh znanii, M., 2001, 632 pp., ISBN 5–93208–043–4

[4] Zausaev A. F., Zausaev A. A., Diskretnye chislennye metody resheniya obyknovennykh differentsialnykh uravnenii, Uchebnoe posobie, Samarskii gos. tekhn. un-t, Samara, 2006, 88 pp.

[5] Altynbaev F. Kh., Matematicheskoe modelirovanie dvizheniya malykh tel Solnechnoi sistemy na osnove teilorovskikh razlozhenii, Avtoref. dis. $\dots$ kand. fiz.-matem. nauk, 05.13.18, Ulyanovsk, 2005, 16 pp.

[6] Volkov E. A., Chislennye metody, Nauka, M., 1982, 256 pp.

[7] Pavlova G. A., Differentsialnye uravneniya, Sbornik zadach i uprazhnenii, SamGTU, Samara, 2005, 84 pp.