Voir la notice de l'article provenant de la source Math-Net.Ru
@article{VSGTU_2008_2_a27, author = {G. A. Zakirova}, title = {An approximate solution of the inverse spectral problem for the {Laplace} operator}, journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences}, pages = {250--253}, publisher = {mathdoc}, number = {2}, year = {2008}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/VSGTU_2008_2_a27/} }
TY - JOUR AU - G. A. Zakirova TI - An approximate solution of the inverse spectral problem for the Laplace operator JO - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences PY - 2008 SP - 250 EP - 253 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VSGTU_2008_2_a27/ LA - ru ID - VSGTU_2008_2_a27 ER -
%0 Journal Article %A G. A. Zakirova %T An approximate solution of the inverse spectral problem for the Laplace operator %J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences %D 2008 %P 250-253 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/VSGTU_2008_2_a27/ %G ru %F VSGTU_2008_2_a27
G. A. Zakirova. An approximate solution of the inverse spectral problem for the Laplace operator. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 2 (2008), pp. 250-253. http://geodesic.mathdoc.fr/item/VSGTU_2008_2_a27/
[1] Danford N., Shvarts Dzh. T., Lineinye operatory. Spektralnaya teoriya, Izd-vo inostr. lit., M., 1962, 1064 pp.
[2] Titchmarsh E. Ch., Razlozheniya po sobstvennym funktsiyam, svyazannye s differentsialnymi uravneniyami vtorogo poryadka, Izd-vo inostr. lit., M., 1961, 555 pp.
[3] Sedov A. I., Zakirova G. A., “Obratnaya zadacha spektralnogo analiza dlya stepeni operatora Laplasa na ravnobedrennom pryamougolnom treugolnike”, Vestn. Sam. gos. un-ta. Estestvennonauchn. ser., 2008, no. 2(61), 34–42