An approximate solution of the inverse spectral problem for the Laplace operator
Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 2 (2008), pp. 250-253.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper is devoted to an approximate solution of the inverse spectral problem for the Laplace operator with the multiple spectrum.
Keywords: an inverse problem, an approximate solution, Laplace operator, a multiple spectrum.
@article{VSGTU_2008_2_a27,
     author = {G. A. Zakirova},
     title = {An approximate solution of the inverse spectral problem for the {Laplace} operator},
     journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
     pages = {250--253},
     publisher = {mathdoc},
     number = {2},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGTU_2008_2_a27/}
}
TY  - JOUR
AU  - G. A. Zakirova
TI  - An approximate solution of the inverse spectral problem for the Laplace operator
JO  - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
PY  - 2008
SP  - 250
EP  - 253
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VSGTU_2008_2_a27/
LA  - ru
ID  - VSGTU_2008_2_a27
ER  - 
%0 Journal Article
%A G. A. Zakirova
%T An approximate solution of the inverse spectral problem for the Laplace operator
%J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
%D 2008
%P 250-253
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VSGTU_2008_2_a27/
%G ru
%F VSGTU_2008_2_a27
G. A. Zakirova. An approximate solution of the inverse spectral problem for the Laplace operator. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 2 (2008), pp. 250-253. http://geodesic.mathdoc.fr/item/VSGTU_2008_2_a27/

[1] Danford N., Shvarts Dzh. T., Lineinye operatory. Spektralnaya teoriya, Izd-vo inostr. lit., M., 1962, 1064 pp.

[2] Titchmarsh E. Ch., Razlozheniya po sobstvennym funktsiyam, svyazannye s differentsialnymi uravneniyami vtorogo poryadka, Izd-vo inostr. lit., M., 1961, 555 pp.

[3] Sedov A. I., Zakirova G. A., “Obratnaya zadacha spektralnogo analiza dlya stepeni operatora Laplasa na ravnobedrennom pryamougolnom treugolnike”, Vestn. Sam. gos. un-ta. Estestvennonauchn. ser., 2008, no. 2(61), 34–42