LINSPACE constructive analogue of $(1+x)^h$ function
Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 2 (2008), pp. 239-249.

Voir la notice de l'article provenant de la source Math-Net.Ru

Algorithms of class $FLINSPACE$ are constructed in order to calculate the arbitrary precision of $(1+x)^h$ function with the help of Taylor expansion. This function is analyzed with the multitude of constructive real numbers, that is, the algorithms calculating rational approximations are used as $x$ argument.
Keywords: rational approximations, algorithms, closeness.
@article{VSGTU_2008_2_a26,
     author = {S. V. Yakhontov},
     title = {LINSPACE constructive analogue of $(1+x)^h$ function},
     journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
     pages = {239--249},
     publisher = {mathdoc},
     number = {2},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGTU_2008_2_a26/}
}
TY  - JOUR
AU  - S. V. Yakhontov
TI  - LINSPACE constructive analogue of $(1+x)^h$ function
JO  - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
PY  - 2008
SP  - 239
EP  - 249
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VSGTU_2008_2_a26/
LA  - ru
ID  - VSGTU_2008_2_a26
ER  - 
%0 Journal Article
%A S. V. Yakhontov
%T LINSPACE constructive analogue of $(1+x)^h$ function
%J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
%D 2008
%P 239-249
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VSGTU_2008_2_a26/
%G ru
%F VSGTU_2008_2_a26
S. V. Yakhontov. LINSPACE constructive analogue of $(1+x)^h$ function. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 2 (2008), pp. 239-249. http://geodesic.mathdoc.fr/item/VSGTU_2008_2_a26/

[1] Ko K., Complexity Theory of Real Functions, Birkhäuser, Boston, 1991, 309 pp. | MR

[2] Du D., Ko K., Theory of Computational Complexity, John Wiley Sons, New York, 2000, 491 pp. | MR

[3] Fikhtengolts G. M., Kurs differentsialnogo i integralnogo ischisleniya, T. 2, Fizmatlit, M., 2003, 864 pp.

[4] Shurygin V. A., Osnovy konstruktivnogo matematicheskogo analiza, Editorial URSS, M., 2004, 328 pp.