Heat conduction problem analytical solution at time dependent heat transfer coefficients
Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 2 (2008), pp. 171-184.

Voir la notice de l'article provenant de la source Math-Net.Ru

With the help of thermal balance integrated method and on the basis of introduction of temperature indignation front the analytical decision of a problem of non-stationary heat conductivity is obtained under boundary conditions of the third kind with variable in time factor of heat return. Graphs of isotherms distribution and velocity of their movement are constructed. In order to provide for the accuracy of the solution the additional boundary conditions defined from initial differential equation and basic boundary conditions, including the data obtained at the front of temperature indignation are entered.
Keywords: integral methods, analytical solutions, front of temperature perturbation, additional boundary conditions, isotherms, speeds of movement of isotherms.
@article{VSGTU_2008_2_a18,
     author = {E. V. Stefanyuk and V. A. Kudinov},
     title = {Heat conduction problem analytical solution at time dependent heat transfer coefficients},
     journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
     pages = {171--184},
     publisher = {mathdoc},
     number = {2},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGTU_2008_2_a18/}
}
TY  - JOUR
AU  - E. V. Stefanyuk
AU  - V. A. Kudinov
TI  - Heat conduction problem analytical solution at time dependent heat transfer coefficients
JO  - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
PY  - 2008
SP  - 171
EP  - 184
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VSGTU_2008_2_a18/
LA  - ru
ID  - VSGTU_2008_2_a18
ER  - 
%0 Journal Article
%A E. V. Stefanyuk
%A V. A. Kudinov
%T Heat conduction problem analytical solution at time dependent heat transfer coefficients
%J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
%D 2008
%P 171-184
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VSGTU_2008_2_a18/
%G ru
%F VSGTU_2008_2_a18
E. V. Stefanyuk; V. A. Kudinov. Heat conduction problem analytical solution at time dependent heat transfer coefficients. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 2 (2008), pp. 171-184. http://geodesic.mathdoc.fr/item/VSGTU_2008_2_a18/

[1] Shumakov N. V., Metod posledovatelnykh intervalov v teplometrii nestatsionarnykh protsessov, Atomizdat, M., 1979, 212 pp.

[2] Tikhonov A. N., Arsenin V. Ya., Metody resheniya nekorrektnykh zadach, Nauka, M., 1974, 288 pp. | Zbl

[3] Tikhonov A. N., Samarskii A. A., Uravneniya matematicheskoi fiziki, Gostekhteorizdat, M.–L., 1951, 724 pp.

[4] Smolskii B. M., Sergeeva L. A., Sergeev V. L., Nestatsionarnyi teploobmen, Nauka i tekhnika, Mn., 1974, 293 pp.

[5] Sergeev V. L., Shashkov A. G., Sergeeva L. A., “Vliyanie svoistv kalorimetricheskogo elementa na rezultaty izmereniya teplovogo potoka”, Inzhenerno-fizicheskii zh., 15:4 (1968), 660–668

[6] Kudinov V. A., Kartashov E. M., Kalashnikov V. V., Analiticheskie resheniya zadach teplomassoperenosa i termouprugosti dlya mnogosloinykh konstruktsii, Uchebn. posob. dlya vuzov, Vyssh. shk., M., 2005, 430 pp.

[7] Kudinov V. A., “Metod koordinatnykh funktsii v nestatsionarnykh zadachakh teploprovodnosti. Obzor”, Izv. AN. Energetika, 2004, no. 3, 84–107

[8] Gudmen T., “Primenenie integralnykh metodov v nelineinykh zadachakh nestatsionarnogo teploobmena”, Problemy teploobmena, Atomizdat, M., 1967, 41–96

[9] Belyaev N. M., Ryadno A. A., Metody nestatsionarnoi teploprovodnosti, Uchebn. posob. dlya vuzov, Vyssh. shk., M., 1978, 328 pp.

[10] Kartashov E. M., Analiticheskie metody v teorii teploprovodnosti tverdykh tel, Vyssh. shk., M., 2001, 550 pp.

[11] Lykov A. V., Teoriya teploprovodnosti, Vyssh. shk., M., 1967, 600 pp. | Zbl

[12] Kudinov V. A., Averin B. V., Stefanyuk E. V. i dr., “Analiticheskie resheniya zadach teploprovodnosti s peremennym nachalnym usloviem na osnove opredeleniya fronta temperaturnogo vozmuscheniya”, Inzhenerno-fizicheskii zh., 80:3 (2007), 27–35

[13] Kudinov V. A., Averin B. V., Stefanyuk E. V., “Resheniya zadach teploprovodnosti pri peremennykh vo vremeni granichnykh usloviyakh na osnove opredeleniya fronta temperaturnogo vozmuscheniya”, Izvest. AN. Energetika, 2007, no. 1, 55–68

[14] Tsirelman N. M., Pryamye i obratnye zadachi teplomassoperenosa, Energoatomizdat, M., 2005, 392 pp.