Solution of one-dimensional softening materials plasticity problems
Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 2 (2008), pp. 152-160.

Voir la notice de l'article provenant de la source Math-Net.Ru

One-dimensional problems for plastically softening material are solved on the basis of structural (micro-non-homogeneous media) and phenomenological (continuum mechanics) models. Analysis of behaviour peculiarities of framed structures beyond the range of stability was performed.
Keywords: plasticity, structural and phenomenological models, one-dimensional problem, postbuckling behaviour.
@article{VSGTU_2008_2_a16,
     author = {E. A. Andreeva},
     title = {Solution of one-dimensional softening materials plasticity problems},
     journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
     pages = {152--160},
     publisher = {mathdoc},
     number = {2},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGTU_2008_2_a16/}
}
TY  - JOUR
AU  - E. A. Andreeva
TI  - Solution of one-dimensional softening materials plasticity problems
JO  - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
PY  - 2008
SP  - 152
EP  - 160
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VSGTU_2008_2_a16/
LA  - ru
ID  - VSGTU_2008_2_a16
ER  - 
%0 Journal Article
%A E. A. Andreeva
%T Solution of one-dimensional softening materials plasticity problems
%J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
%D 2008
%P 152-160
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VSGTU_2008_2_a16/
%G ru
%F VSGTU_2008_2_a16
E. A. Andreeva. Solution of one-dimensional softening materials plasticity problems. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 2 (2008), pp. 152-160. http://geodesic.mathdoc.fr/item/VSGTU_2008_2_a16/

[1] Kadashevich Yu. I., Peisakhov A. M., Pomytkin S. P., “Rasshirennyi variant teorii polzuchesti, uchityvayuschii mikrorazrusheniya”, Vestn. Sam. gos. tekhn. un-ta. Ser. Fiz.-mat. nauki, 2008, no. 1(16), 33–35 | DOI

[2] Kadashevich Yu. I., “Teoriya plastichnosti i polzuchesti, uchityvayuschaya mikrorazrusheniya”, Dokl. AN SSSR, 266:6 (1982), 79–87

[3] Novozhilov V. V., Kadashevich Yu. I., Mikronapryazheniya v konstruktsionnykh materialakh, Mashinostroenie, L., 1990, 224 pp.

[4] Struzhanov V. V., Bashurov Vyach. V., “Mikronapryazheniya v konstruktsionnykh materialakh”, Vestn. Sam. gos. tekhn. un-ta. Ser. Fiz.-mat. nauki, 2007, no. 1(14), 20–39

[5] Radchenko V. P., Erëmin Yu. A., Reologicheskoe deformirovanie i razrushenie materialov i elementov konstruktsii, Mashinostroenie-1, M., 2004, 265 pp., ISBN 5–94275–111–0

[6] Radchenko V. P., Nebogina E. V., Basov M. V., “Strukturno-fenomenologicheskii podkhod k opisaniyu polnoi diagrammy uprugoplasticheskogo deformirovaniya”, Izvestiya vuzov. Mashinostroenie, 2000, no. 5–6, 3–13

[7] Radchenko V. P., Andreeva E. A., “Chislennoe modelirovanie mikro- i makrorazrusheniya sterzhnevykh sistem iz plasticheski razuprochnyayuschegosya materiala”, Tr. Tretei Vseros. nauchn. konf. Ch. 1, Matematicheskie modeli mekhaniki, prochnosti i nadëzhnosti elementov konstruktsii, Matem. modelirovanie i kraev. zadachi, SamGTU, Samara, 2006., 176–181

[8] Radchenko V. P., Andreeva E. A., “Ob effekte Baushingera na stadii plasticheskogo razuprochneniya materiala”, Zimnyaya shkola po mekhanike sploshnykh sred (pyatnadtsataya), Sb. statei, Ch. 1, IMSS UrO RAN, Perm, 2007, 42–45

[9] Vildeman V. E., Sokolkin Yu. V., Tashkinov A. A., Mekhanika neuprugogo deformirovaniya i razrusheniya kompozitsionnykh materialov, Nauka, Fizmatlit, M., 1997, 288 pp. | MR

[10] Struzhanov V. V., “Svoistva razuprochnyayuschikhsya materialov i opredelyayuschie sootnosheniya pri odnoosnom napryazhënnom sostoyanii”, Vestn. Sam. gos. tekhn. un-ta. Ser. Fiz.-mat. nauki, 2007, no. 2(15), 69–78 | DOI

[11] Struzhanov V. V., Mironov V. I., Deformatsionnoe razuprochnenie materiala v elementakh konstruktsii, UrO RAN, Ekaterinburg, 1995, 191 pp.

[12] Struzhanov V. V., “Uprugoplasticheskaya sreda s razuprochneniem. Soobschenie 1. Svoistvo materiala i inkrementalnyi zakon plastichnosti pri rastyazhenii”, Vestn. Sam. gos. tekhn. un-ta. Ser. Fiz.-mat. nauki, 2006, no. 42, 49–61 | DOI

[13] Radchenko V. P., “Matematicheskaya model neuprugogo deformirovaniya i razrusheniya metallov pri polzuchesti energeticheskogo tipa”, Vestn. Sam. gos. tekhn. un-ta. Ser. Fiz.-mat. nauki, 1996, no. 4, 43–63 | DOI

[14] Vildeman V. E., Sokolkin Yu. V., Tashkinov A. A., Kraevye zadachi kontinualnoi mekhaniki razrusheniya, Preprint, UrORAN, Perm, 1992, 78 pp.

[15] Lebedev A. A., Marusii O. I., Chausov N. G. i dr., “Issledovanie kinetiki razrusheniya materialov na zaklyuchitelnoi stadii deformirovaniya”, Probl. prochnosti, 1982, no. 1, 12–18

[16] Pezhina P., “Modelirovanie zakriticheskogo povedeniya i razrusheniya dissipativnogo tvërdogo tela”, Teoretich. osnovy inzhenernykh raschëtov, 106:4 (1984), 107–117

[17] Lebedev A. A., Chausov N. G., Marusii O. I. i dr., “Kinetika razrusheniya listovoi austenitnoi stali na zaklyuchitelnoi stadii deformirovaniya”, Probl. prochnosti, 1989, no. 3, 16–21

[18] Radchenko V. P., Pavlova G. A., Gorbunov S. V., “Ob ustoichivosti reshenii odnogo varianta endokhronnoi teorii odnoosnoi plastichnosti”, Tr. Pyatoi Vseros. nauchn. konf. s mezhdunar. uchastiem. Ch. 1, Matematicheskie modeli mekhaniki, prochnosti i nadëzhnosti elementov konstruktsii, Matem. modelirovanie i kraev. zadachi., SamGTU, Samara, 2008, 255–261

[19] Rabotnov Yu. N., Polzuchest elementov konstruktsii, Nauka, M., 1966, 752 pp.

[20] Novozhilov V. V., “O plasticheskom razrykhlenii”, PMM, 29:4 (1965), 681–689 | MR