Application of the modified boundary element method for solving elasto-plastic problems
Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 2 (2008), pp. 118-125.

Voir la notice de l'article provenant de la source Math-Net.Ru

Method for solving the problems of elasto-plastic body deformation is proposed. Algorithm for plastic zone determination and iterative procedure for stress-strain state calculation are obtained based on the modified boundary element method. The procedure contains consecutive calculations by derived analytical formula. Integration over the domain being deformed is excluded from the procedure.
Keywords: boundary elements, analytical calculations, nonlinearly elastic deformation.
@article{VSGTU_2008_2_a12,
     author = {V. P. Fedotov and L. F. Spevak},
     title = {Application of the modified boundary element method for solving elasto-plastic problems},
     journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
     pages = {118--125},
     publisher = {mathdoc},
     number = {2},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGTU_2008_2_a12/}
}
TY  - JOUR
AU  - V. P. Fedotov
AU  - L. F. Spevak
TI  - Application of the modified boundary element method for solving elasto-plastic problems
JO  - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
PY  - 2008
SP  - 118
EP  - 125
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VSGTU_2008_2_a12/
LA  - ru
ID  - VSGTU_2008_2_a12
ER  - 
%0 Journal Article
%A V. P. Fedotov
%A L. F. Spevak
%T Application of the modified boundary element method for solving elasto-plastic problems
%J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
%D 2008
%P 118-125
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VSGTU_2008_2_a12/
%G ru
%F VSGTU_2008_2_a12
V. P. Fedotov; L. F. Spevak. Application of the modified boundary element method for solving elasto-plastic problems. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 2 (2008), pp. 118-125. http://geodesic.mathdoc.fr/item/VSGTU_2008_2_a12/

[1] Brebbiya K., Telles Zh., Vroubel L., Metody granichnykh elementov, Mir, M., 1987, 524 pp. | MR

[2] Fedotov V. P., Spevak L. F., “K analiticheskomu vychisleniyu integralov v chislenno-analiticheskom metode resheniya zadach matematicheskoi fiziki”, Vestn. Sam. gos. tekhn. un-ta. Ser. Fiz.-mat. nauki, 2006, no. 43, 91–98 | DOI

[3] Fedotov V. P., Spevak L. F., Reshenie svyaznykh diffuzionno-deformatsionnykh zadach na osnove algoritmov parallelnogo deistviya, UrO RAN, Ekaterinburg, 2007, 172 pp.

[4] Fedotov V. P., Spevak L. F., Trukhin V. B., “Vychislenie napryazhenii v metode granichnykh elementov s ispolzovaniem analiticheskogo vychisleniya integralov”, Vestn. Sam. gos. tekhn. un-ta. Ser. Fiz.-mat. nauki, 2007, no. 2(15), 79–84 | DOI

[5] Fedotov V. P., Spevak L. F., “One approach to the derivation of exact integration formulae in the boundary element method”, Engineering Analysis with Boundary Elements, 32:10 (2008), 883–888 | DOI