Difference methods of boundary value problems solution for wave equation equipped with fractional time derivative
Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 2 (2008), pp. 13-20.

Voir la notice de l'article provenant de la source Math-Net.Ru

Boundary value problems for wave equation with fractional time derivative are studied. А priori estimates for solution of boundary value problems of the first and third kind in differential form are obtained. Difference schemes of the second order approximation are constructed for the mentioned problems. A priori estimate in difference form is obtained for difference scheme approximating the boundary value problem of the first kind.
Keywords: boundary-value problem, prior estimate, difference scheme, firmness and convergence difference scheme, regularized fractional derivative.
@article{VSGTU_2008_2_a1,
     author = {A. A. Alikhanov},
     title = {Difference methods of boundary value problems solution for wave equation equipped with fractional time derivative},
     journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
     pages = {13--20},
     publisher = {mathdoc},
     number = {2},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGTU_2008_2_a1/}
}
TY  - JOUR
AU  - A. A. Alikhanov
TI  - Difference methods of boundary value problems solution for wave equation equipped with fractional time derivative
JO  - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
PY  - 2008
SP  - 13
EP  - 20
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VSGTU_2008_2_a1/
LA  - ru
ID  - VSGTU_2008_2_a1
ER  - 
%0 Journal Article
%A A. A. Alikhanov
%T Difference methods of boundary value problems solution for wave equation equipped with fractional time derivative
%J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
%D 2008
%P 13-20
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VSGTU_2008_2_a1/
%G ru
%F VSGTU_2008_2_a1
A. A. Alikhanov. Difference methods of boundary value problems solution for wave equation equipped with fractional time derivative. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 2 (2008), pp. 13-20. http://geodesic.mathdoc.fr/item/VSGTU_2008_2_a1/

[1] Nigmatullin R. R., “Osobennosti relaksatsii sistemy s “ostatochnoi” pamyatyu”, Fiz. tvërdogo tela, 27:5 (1985), 1583–1585

[2] Chukbar K. V., “Stokhasticheskii perenos i drobnye proizvodnye”, ZhETF, 108:5(11) (1995), 1875–1884 | MR

[3] Shogenov V. Kh., Kumykova S. K., Shkhanukov-Lafishev M. Kh., “Obobschënnoe uravnenie perenosa i drobnye proizvodnye”, Dokl. Adygskoi (Cherkesskoi) Mezhdunarodnoi Akademii Nauk, 1:3 (1996), 43–45

[4] Pitcher E., Sewell W. E., “Existence theorems for solution of differential equations of non-integral order”, Bull. Amer. Math. Soc., 44:2 (1938), 100–107 | DOI | MR | Zbl

[5] Mandelbrojt S., “Sulla generalizzazione del calcolo delle variazione”, Atti. Reale Accad. Naz. Lincei. Rend Cl. Fis. mat. netur. Ser. 6, 1 (1925), 151–156 | Zbl

[6] Babenko Yu. A., Teplomassoobmen. Metod raschëta teplovykh i diffuznykh potokov, Khimiya, L., 1986, 144 pp.

[7] Shkhanukov M. Kh., “O skhodimosti raznostnykh skhem dlya differentsialnykh uravnenii s drobnoi proizvodnoi”, Dokl. RAN, 348:6 (1996), 746–748 | MR | Zbl

[8] Shkhanukov-Lafishev M. Kh., Nakhusheva F. M., Abregov M. Kh., “Lokalno-odnomernaya skhema pervoi nachalno-kraevoi zadachi dlya uravneniya teploprovodnosti s drobnoi proizvodnoi v mladshikh chlenakh”, Vestn. KBNTs RAN, 1:1 (1998), 35–40

[9] Digurova A. M., Shkhanukov M. Kh., “O skhodimosti raznostnykh skhem, approksimiruyuschikh kraevye zadachi dlya differentsialnogo uravneniya na fraktalakh”, Sb. nauchn. tr. IV Vseros. simp. “Matematicheskoe modelirovanie i kompyuternye tekhnologii”, T. 2, Kislovodsk, 2000, 14–15

[10] Ladyzhenskaya, O. A., Solonnikov V. A., Uraltseva N. N., Lineinye i kvazilineinye uravneniya parabolicheskogo tipa, Nauka, M., 1967, 736 pp. | MR

[11] Samarskii A. A., Teoriya raznostnykh skhem, Nauka, M., 1977, 656 pp. | MR

[12] Samarskii A. A., “Odnorodnye raznostnye skhemy na neravnomernykh setkakh dlya uravnenii parabolicheskogo tipa”, ZhVM i MF, 32 (1963), 266–298