Voir la notice de l'article provenant de la source Math-Net.Ru
@article{VSGTU_2008_2_a1, author = {A. A. Alikhanov}, title = {Difference methods of boundary value problems solution for wave equation equipped with fractional time derivative}, journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences}, pages = {13--20}, publisher = {mathdoc}, number = {2}, year = {2008}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/VSGTU_2008_2_a1/} }
TY - JOUR AU - A. A. Alikhanov TI - Difference methods of boundary value problems solution for wave equation equipped with fractional time derivative JO - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences PY - 2008 SP - 13 EP - 20 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VSGTU_2008_2_a1/ LA - ru ID - VSGTU_2008_2_a1 ER -
%0 Journal Article %A A. A. Alikhanov %T Difference methods of boundary value problems solution for wave equation equipped with fractional time derivative %J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences %D 2008 %P 13-20 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/VSGTU_2008_2_a1/ %G ru %F VSGTU_2008_2_a1
A. A. Alikhanov. Difference methods of boundary value problems solution for wave equation equipped with fractional time derivative. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 2 (2008), pp. 13-20. http://geodesic.mathdoc.fr/item/VSGTU_2008_2_a1/
[1] Nigmatullin R. R., “Osobennosti relaksatsii sistemy s “ostatochnoi” pamyatyu”, Fiz. tvërdogo tela, 27:5 (1985), 1583–1585
[2] Chukbar K. V., “Stokhasticheskii perenos i drobnye proizvodnye”, ZhETF, 108:5(11) (1995), 1875–1884 | MR
[3] Shogenov V. Kh., Kumykova S. K., Shkhanukov-Lafishev M. Kh., “Obobschënnoe uravnenie perenosa i drobnye proizvodnye”, Dokl. Adygskoi (Cherkesskoi) Mezhdunarodnoi Akademii Nauk, 1:3 (1996), 43–45
[4] Pitcher E., Sewell W. E., “Existence theorems for solution of differential equations of non-integral order”, Bull. Amer. Math. Soc., 44:2 (1938), 100–107 | DOI | MR | Zbl
[5] Mandelbrojt S., “Sulla generalizzazione del calcolo delle variazione”, Atti. Reale Accad. Naz. Lincei. Rend Cl. Fis. mat. netur. Ser. 6, 1 (1925), 151–156 | Zbl
[6] Babenko Yu. A., Teplomassoobmen. Metod raschëta teplovykh i diffuznykh potokov, Khimiya, L., 1986, 144 pp.
[7] Shkhanukov M. Kh., “O skhodimosti raznostnykh skhem dlya differentsialnykh uravnenii s drobnoi proizvodnoi”, Dokl. RAN, 348:6 (1996), 746–748 | MR | Zbl
[8] Shkhanukov-Lafishev M. Kh., Nakhusheva F. M., Abregov M. Kh., “Lokalno-odnomernaya skhema pervoi nachalno-kraevoi zadachi dlya uravneniya teploprovodnosti s drobnoi proizvodnoi v mladshikh chlenakh”, Vestn. KBNTs RAN, 1:1 (1998), 35–40
[9] Digurova A. M., Shkhanukov M. Kh., “O skhodimosti raznostnykh skhem, approksimiruyuschikh kraevye zadachi dlya differentsialnogo uravneniya na fraktalakh”, Sb. nauchn. tr. IV Vseros. simp. “Matematicheskoe modelirovanie i kompyuternye tekhnologii”, T. 2, Kislovodsk, 2000, 14–15
[10] Ladyzhenskaya, O. A., Solonnikov V. A., Uraltseva N. N., Lineinye i kvazilineinye uravneniya parabolicheskogo tipa, Nauka, M., 1967, 736 pp. | MR
[11] Samarskii A. A., Teoriya raznostnykh skhem, Nauka, M., 1977, 656 pp. | MR
[12] Samarskii A. A., “Odnorodnye raznostnye skhemy na neravnomernykh setkakh dlya uravnenii parabolicheskogo tipa”, ZhVM i MF, 32 (1963), 266–298