Classic theorem by Lyapunov for differential equations in Hilbert spaces
Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 2 (2008), pp. 6-12.

Voir la notice de l'article provenant de la source Math-Net.Ru

A theorem analogical to Lyapunov Classic Theorem is formulated for differential equations in Hilbert spaces. Example from the theory of partial differential equations is presented. The result automatically demonstrates the well-know conditions of continuum existence for periodic solutions of ordinary differential equations systems. Moreover, by applying the topological degree theory, these conditions can be set as less rigid than those formulated in Hopf Bifurcation Theory.
Keywords: Lyapunov theorem, Hilbert space, periodic solutions, Fredholm operator, a special nonequivalent substitution of variable.
@article{VSGTU_2008_2_a0,
     author = {S. A. Vavilov and V. S. Fedotova},
     title = {Classic theorem by {Lyapunov} for differential equations in {Hilbert} spaces},
     journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
     pages = {6--12},
     publisher = {mathdoc},
     number = {2},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGTU_2008_2_a0/}
}
TY  - JOUR
AU  - S. A. Vavilov
AU  - V. S. Fedotova
TI  - Classic theorem by Lyapunov for differential equations in Hilbert spaces
JO  - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
PY  - 2008
SP  - 6
EP  - 12
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VSGTU_2008_2_a0/
LA  - ru
ID  - VSGTU_2008_2_a0
ER  - 
%0 Journal Article
%A S. A. Vavilov
%A V. S. Fedotova
%T Classic theorem by Lyapunov for differential equations in Hilbert spaces
%J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
%D 2008
%P 6-12
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VSGTU_2008_2_a0/
%G ru
%F VSGTU_2008_2_a0
S. A. Vavilov; V. S. Fedotova. Classic theorem by Lyapunov for differential equations in Hilbert spaces. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 2 (2008), pp. 6-12. http://geodesic.mathdoc.fr/item/VSGTU_2008_2_a0/

[1] Malkin I. G., Nekotorye zadachi teorii nelineinykh kolebanii, Editorial URSS, M., 2004, 496 pp., ISBN 5–354–00906–9

[2] Trenogin V. A., Funktsionalnyi analiz, Fizmatlit, M., 2002, 488 pp., ISBN 5–9221–0272–9

[3] Vavilov S. A., “Geometricheskie metody issledovaniya razreshimosti odnogo klassa operatornykh uravnenii”, Dokl. RAN, 323:2 (1992), 206–210 | MR | Zbl

[4] Vavilov S. A., “O netrivialnykh resheniyakh nekotorykh klassov operatornykh uravnenii”, Dokl. RAN, 331:1 (1993), 7–10 | MR | Zbl

[5] Vavilov S. A., “A method of studying the existence of nontrivial solutions to some classes of operator equations with an application to resonance problems in mechanics”, Nonlinear Anal., 24:5 (1995), 747–764 | DOI | MR | Zbl

[6] Kolmogorov A. N., Fomin S. V., Elementy teorii funktsii i funktsionalnogo analiza, Nauka, M., 1981, 544 pp. | MR